
Display calculi and nominal string diagrams

Samuel Balco

Supervised by Alexander Kurz and Tom Ridge

Thesis submitted for the degree of Doctor of Philosophy at the University of

Leicester

Department of Informatics

December 2019

Declaration of Authorship

I, Samuel Balco, declare that this thesis titled, “Display calculi and nominal string diagrams”

and the work presented in it are my own. I confirm that:

• This work was done wholly or mainly while in candidature for a research degree at

this University.

• Where any part of this thesis has previously been submitted for a degree or any other

qualification at this University or any other institution, this has been clearly stated.

• Where I have consulted the published work of others, this is always clearly attributed.

• Where I have quoted from the work of others, the source is always given. With the

exception of such quotations, this thesis is entirely my own work.

• I have acknowledged all main sources of help.

• Where the thesis is based on work done by myself jointly with others, I have made

clear exactly what was done by others and what I have contributed myself.

Signed:

Date:

Abstract

Department of Informatics

Display calculi and nominal string diagrams
by Samuel Balco

This thesis is divided into two sections, encompassing two main topics: dis-

play calculi and nominal string diagrams.

In the first section of the thesis, we introduce display calculi and present their

advantages and drawbacks compared to sequent calculi. The rest of the sec-

tion presents the calculus toolbox, a meta-tool for formalising display calculi.

The tool includes a tree editor and a type-checker, which aid the user in ex-

ploring display calculi more efficiently.

Section two grew out of an attempt to build a calculus of simultaneous sub-

stitutions for a display version of first order logic. This section explores the

topic of string diagrams, in particular, we present two categorical formalisa-

tions of nominal string diagrams, along with a formal translation of ordinary

string diagrams into nominal string diagrams (and vice versa).

Acknowledgements

First and foremost, I would like to thank my boyfriend Olly, my parents and my

sister for supporting me throughout my studies. Equally large is my gratitude

to my first supervisor, Alex. He was an excellent supervisor with whom I spent

countless hours pouring over category theory and many (if not more) talking

about politics, art, technology, engineering or really anything we both found

interesting. I would also like to thank his wife Lisa and his family, for the

movie nights we enjoyed together. I want to thank his son Julius for allowing

me to help him design his fort and my friend and colleague Drew for helping

us in actually building it (see fig. 1).

A great thanks goes to my other supervisor Tom, who provided support and

amusing commentary on life over countless coffee breaks.

I also want to thank all my friends and colleagues, in particular Claudia, who

was an excellent house mate and fellow PhD student, Sam Jones, Frances Mc-

Nally, Joe Turner and all my other Leicester friends, who have made Leicester

and the UK my home. I would like thank all my collaborators and people I’ve

met and had interesting conversations with throughout my PhD, listed alpha-

betically to avoid any accusations of favouritism: Sabine Frittella, Giuseppe

Greco, Peter Jipsen, Drew Moshier, Alessandra Palmigiano, Paweł Sobociński,

Georg Struth and Apostolos Tzimoulis. Finally, I would like to thank my exam-

iners, Fabio Zanasi and Roy Crole for reading this thesis and providing such

detailed comments and helpful references to relevant literature.

Figure 1: The Fort

v

Contents

1 Introduction 1

I Display calculi 5

2 Background 6

2.1 Sequent calculus . 6

2.1.1 Cut rule and cut-elimination . 8

2.1.2 Limitations . 8

2.2 Display calculi . 9

2.3 Trade-offs . 11

2.4 Modal logics and multi-type display calculi 12

3 Calculus toolbox 13

3.1 Muddy children puzzle . 13

3.2 Tree editor . 14

3.3 Calculus editor . 15

3.4 Internal representation . 17

3.5 Type checking . 18

3.6 Front-end . 19

3.7 Limitations . 20

4 Toolbox t3 21

4.1 FOL displayed . 21

4.2 Dependent types . 23

4.3 t3 core . 24

4.4 SMT solvers and the Prop type . 25

4.5 Translation to LATEX . 28

i

II Nominal string diagrams 31

5 Introduction 32

6 Partially monoidal string diagrams 35
6.1 Partially monoidal categories . 35

6.2 Syntax and Semantics . 38

6.2.1 Ordered sets of wires . 40

6.2.2 Ordered multisets of wires . 43

6.2.3 Sets of wires . 45

6.3 The Theory of Bijective Functions . 46

6.4 The Theory of Functions . 54

6.5 Software Tools . 61

6.5.1 Termination Proof . 61

6.5.2 Confluence Proof . 62

6.5.3 Related work . 62

7 Nominal string diagrams 64
7.1 Setting the Scene: String Diagrams and Nominal Sets 64

7.1.1 String Diagrams and PROPs . 64

7.1.2 Nominal Sets . 66

7.2 Internal monoidal categories . 67

7.3 Examples . 82

7.4 Nominal monoidal theories and nominal PROPs 84

7.4.1 Nominal monoidal theories . 84

7.4.2 Diagrammatic 𝛼-equivalence . 86

7.4.3 Nominal PROPs . 88

7.5 Equivalence of nominal and ordinary PROPs 91

7.6 Equivalence of theories . 109

7.6.1 Embedding PROPSs into nPROPs . 111

7.6.2 Translating SMTs into NMTs . 112

7.6.3 Completeness of NMTs . 114

7.6.4 Embedding nominal PROPSs into PROPSs 122

7.6.5 Translating NMTs into SMTs . 123

7.6.6 Completeness of SMTs . 124

7.7 Related work . 130

7.8 Conclusion . 131

8 Conclusion 133

Bibilography 135

ii

Appendix 140

A Sequent calculus in t3 140

B Internal categories 143

iii

Offer me a herbal tea and I will deliver a fart so

dense and multi layered that your face will bend in

on itself and become a butter dish

Bob Mortimer

1
Introduction

T
his thesis comprises of two parts, exploring the topics of tool support for display

calculi and nominal string diagrams. Display calculi are a generalisation of se-

quent calculi [1] by Belnap [2] and have been studied extensively in the setting

of modal and epistemic logics as well as other substructural logics (see [3–7]). They offer

interesting proof-theoretic advantages over sequent calculi, such as the cut-elimination

meta-theorem, along with better modularity/composability of different logics. However,

this comes at the cost of verbosity, where a display version of a given logic will usually have

a larger number of rules, compared to other formalisms like a sequent calculus or an ax-

iomatic (Hilbert-style) system. We provide further details and examples of the advantages

and disadvantages of display calculi in ch. 2, the introduction to part I of this thesis.

The following chapter (ch. 3) introduces and describes the features of the “calculus toolbox”,

a meta-tool for building and working with display calculi. This toolbox was developed to

tackle the added complexity when working with display logics. We progressively developed

several versions of the “calculus toolbox” testing different approaches and aims in each

version.

The toolbox described in ch. 3 is essentially a tree editor for constructing proofs in a display

logic, which includes a typechecker that ensures correct proof tree construction. This tool-

box grew out of a practical need to “test” display calculi by building proof trees. Due to the

large number of rules, this was tedious and error prone to do by hand. The tool made this

task much simpler by adding a visual proof tree editor and a simple way to export correct

proofs as properly type-set LATEX proof trees.

1

The calculus toolbox is a meta-toolbox, which means that the user can encode and modify

their own display logic by adding inductively defined data-types for terms and encoding

rules over these terms. These are in turn incorporated in the type-checker when construct-

ing proof trees. We give further details on the internal workings of this tool in ch. 3. The

toolbox described in this section is in fact a second iteration of the calculus toolbox, being

a descendant of the original tool, presented in [8]. The second version made usability im-

provements aimed at mathematicians who are not necessarily programmers, by making it

easier to build and modify display calculi within the toolbox.

The next version of the toolbox, presented in ch. 4, focuses on extending the meta-toolbox

to other logical formalisms besides display logics. As a result, the architecture of this tool

changed drastically, compared to the previous version. The previous toolbox was built as

meta-tool, which, given a description of a display logic and it’s rules would be compiled

into a tree editor with a type-checker, tailored for the specified logic. The new version of

the toolbox takes a more unified approach, by combining the three languages for defining

the terms, rules and proof trees into a single one.

In part II of this thesis, comprising of ch. 6 and ch. 7, we explore an altogether different

topic of string diagrams. Whilst quite different to the work in part I, our study of string

diagrams actually grew out of our work on display calculi. Inspired by a lecture series on

graphical linear algebra using string diagrams, given by Paweł Sobociński at MGS 2017, we

started exploring string diagrams as a way to formalise variable substitutions.

For example, given the following picture, it is quite easy to see that it represents a bijection:

Interpreting the picture as a function on ordered ports, the diagram above swaps port 1

and port 3 and leaves port 2 unchanged. This picture is not just intuitive, it can in fact be

translated into “rigorous”, i.e. algebraic notation, using two different multiplications for the

horizontal and vertical composition of basic diagrams which make up the picture above. We

decompose this diagram into into the picture below, which uses +○ for vertical composition

and ; for horizontal composition of basic diagrams. These include the straight identity wire
and 𝜎, which represents crossing wires.

2

https://www.cs.le.ac.uk/events/mgs2017/courses/graphical-linear-algebra.html

id

σ

σ

id
σ

id

;;

We thus obtain a 1-dimensional representation of the diagram above:

(id +○ 𝜎) ; (𝜎 +○ id) ; (id +○ 𝜎)

The idea of using graphical syntax for mathematics in a rigorous way has been around for a

long time. Whilst somewhat difficult to tell with certainty, arguably the first formal definition

of string diagrams appears in the habilitation thesis of Günter Hotz [9]. However, forms of

diagrammatic reasoning in areas such as knot theory have much earlier origins (see [10]

for a nice historical summary). Definitions of string diagrams have also been introduced,

amongst others, by Penrose [11], Joyal & Street [12, 13] and have cropped up in presentations

of sequent calculi [14], linear logic as proof nets [15, 16], bigraphs [17], signal flow diagrams

in control theory [18] and network theory [19] as well as in areas such as quantum physics

and computing [20].

All of these formalisms are underpinned by the same category theory, namely that of

(symmetric) monoidal categories, specifically product and permuntation categories called
PROP
::::

s for short, introduced by MacLane [21]. For an overview of classic/single sorted string

diagrams see [22].

Returning to the graphical representation of a bijection above, we can see that whilst this

diagram does represent a bijection, it does not represent the bijective substitution of names

(permutations) that we want, since no names appear in the diagram. We can remedy this

situation by adding labels (representing names) to the previous picture:

a

b

c

a

b

c

Now we can map a basic renaming [𝑎 ↦ 𝑏], which renames and 𝑎 into a 𝑏, to a string
diagram a b (which we denote by 𝛿𝑎𝑏). We use the ◇ symbol to explicitly denote
the change of labels from 𝑎 to 𝑏. We call this extended graphical formalism nominal string

diagrams and in ch. 7, show that they are underpinned by the theory of nominal sets [23,

24], which provide an ideal framework for working with names.

Gaining expressiveness through the addition of names does come with a trade-off however.

Because we want to use nominal string diagrams to present functions on names, the dia-

3

grams must of course follow the rules of being a function. Concretely, this means that we

do not consider the following to be a valid diagram1:

ba

ca

In order to restrict to only “valid” diagrams, the vertical composition +○ becomes partial. The

full details of the construction of nominal string diagrams with a partial +○, along with their
categorical presentation via partially monoidal categories, are given in ch. 6.

Whilst ch. 6 mostly talks about nominal diagrams which deviate from ordinary string

diagrams only by introducing named wires along with the basic “diamond” diagram
a b , in sec. 6.2.1, we present slightly simplified nominal string diagrams, which

remove explicit twists 𝜎. Our running example thus turns into several equivalent diagrams,
bringing the graphical formalism further in line with the intended semantics of string

diagrams representing functions on names:

c

b

c

a

b

c a

b

c

b

c a

b

c

c

a

b

c a

ca= =

Algebraically, we can write down the left most diagram above as 𝛿𝑎𝑐 +○ id𝑏 +○ 𝛿𝑐𝑎.

Finally, ch. 7 focuses on streamlining nominal string diagrams further, by refining the notion

of partial monoidal categories to nominal monoidal categories, thus providing a more com-

plete categorical picture of the underlying structure of nominal string diagrams. Contents

of this chapter were co-written with my supervisor, Prof. Alexander Kurz and have appeared

as a paper at CALCO 2019, receiving the best paper award.

1The diagram is not a function because it maps the name 𝑎 to two different outputs 𝑏, 𝑐.

4

Humans are not logical creatures. They are merely ca-

pable of doing logic.

T. M. O. Horne

I
Display calculi

5

I don’t know if I’ve ever been to Australia… Have I

been to Australia?

Justin Bieber

2
Background

I
n this chapter, we will give some background information on the kind of calculi

we were considering when building the calculus toolbox and what design de-

cisions we made as a result. More specifically, we give a brief introduction to

Gentzen’s sequent calculus and its generalization in the form of a display calculus, which is

the primary formalism used to define calculi in the toolbox. Finally, we describe a further

generalisation of display calculi to a multi-type setting.

2.1 Sequent calculus

To place the sequent and display calculi into context, we give a brief account of their history

within the field of proof theory, which concerns itself with the study of proofs as mathemat-

ical objects. The roots of modern proof theory are often attributed to David Hilbert and his

“Hilbert’s program”, which focused attention on mathematical proof as a formal object of

mathematical study. Hilbert gave axiomatisations of numerous fields of mathematics, such

as the foundations of geometry1, algebraic number andmathematical logic, amongst others,

in his later work using a framework of axiomatic schemas we now refer to as Hilbert cal-

culi2. More precisely, a Hilbert calculus is a formal system of axiom schemas along with the

modus-ponens derivation rule, where a formal mathematical proof (called a derivation) of
1Hilbert presented the axioms of geometry in his book Grundlagen der Geometrie.
2Whilst this formalism carries Hilbert’s name, he was by no means the first or only person at the time, using

such axiomatic calculi.

6

some logical statement 𝑃 is a finite sequence of formulas ending in 𝑃, where each formula
is either an instance of one of the axiom schemas, or has been derived via the application

of the modus ponens rule from two previous formulas in the list. Given the axiom schema

for the propositional fragment of classical logic:

𝐴 → (𝐵 → 𝐴) (Ax 1)

(𝐴 → (𝐵 → 𝐶)) → ((𝐴 → 𝐵) → (𝐴 → 𝐶)) (Ax 2)

(¬𝐴 → ¬𝐵) → ((¬𝐴 → 𝐵) → 𝐴) (Ax 3)

and the modus ponens rule:
𝐴 𝐴 → 𝐵

𝐵 (MP)

we can show the derivation of 𝑃 → 𝑃:

1 (𝑃 → ((𝑃 → 𝑃) → 𝑃)) (Ax 1)

2 ((𝑃 → ((𝑃 → 𝑃) → 𝑃)) → ((𝑃 → (𝑃 → 𝑃)) → (𝑃 → 𝑃))) (Ax 2)

3 ((𝑃 → (𝑃 → 𝑃)) → (𝑃 → 𝑃)) (MP) with 1 and 2

4 (𝑃 → (𝑃 → 𝑃)) (Ax 1)

5 𝑃 → 𝑃 (MP) with 4 and 3

Whilst this formalism is extremely simple (having only one inference rule), it can be quite

cumbersome to use for proofs of “regular mathematics”, which are often conditional proofs

of the form Γ |− 𝐹3.

The sequent calculi LK and LJ were introduced by Gerhard Gentzen in 1935 [1] as formalisa-
tions of classical and intuitionistic versions of first order logic4. Gentzen’s sequent calculus

introduces a more complex formalism called a sequent, which has the form:

𝐴1, 𝐴2, … , 𝐴𝑚 |− 𝐵1, 𝐵2, … , 𝐵𝑛 𝑚, 𝑛 ∈ ℕ

where 𝐴s and 𝐵s are formulas. Gentzen’s sequent can be seen as analogous to the following
formula in a Hilbert system:

𝐴1 ∧ 𝐴2 ∧ … ∧ 𝐴𝑚 → 𝐵1 ∨ 𝐵2 ∨ … ∨ 𝐵𝑛

where the turnstile is interpreted as implication and the comma as conjunction on the left

and disjunction on the right of the turnstile.

Rather than having only one inference rule and many axioms, sequent calculi instead opt

3These can be read as “under the hypothesis Γ, 𝐹 holds”.
4However, in this section, we will only focus on the propositional fragments of these logics.

7

to have many rules of inference and only trivial axioms, such as

𝐴 |− 𝐴

As a result, a proof or a derivation of some sequent Γ |− Δ5 is a tree, with Γ |− Δ at the root:

𝐼𝑑𝐴 |− 𝐴 𝐼𝑑𝐵 |− 𝐵 ∨𝐿𝐴 ∨ 𝐵 |− 𝐴 , 𝐵 𝑃𝑅𝐴 ∨ 𝐵 |− 𝐵 , 𝐴 ¬𝐿𝐴 ∨ 𝐵 , ¬𝐵 |− 𝐴

2.1.1 Cut rule and cut-elimination

When Gentzen introduced the sequent calculus, he showed that that it was sound and com-

plete with respect to the semantics of first order logic. In order to show completeness, he

included the Cut rule, which is an analogue to modus ponens in the Hilbert system:

Γ |− Δ, 𝐴 𝐴, Σ |− Π 𝐶𝑢𝑡Γ, Σ |− Δ, Π

However, he also showed that this rule could be eliminated from his calculus without any

loss of expressiveness/deductive power. One reason for wanting to eliminate the cut rule

is its non-analyticity, a consequence of the fact that the formula 𝐴 only appears in the
premises of the rule but not the conclusion. When performing proof search (searching for a

proof by constructing a proof tree bottom-up) the cut rule presents an arbitrary choice, as

the search procedure needs to pick some 𝐴 to proceed. This makes the search space infinite,
since there are infinitely many formulas 𝐴 to choose from. Thus, being able to eliminate the
use of cut is highly desirable, since it usually entails consistency of the given calculus [1].

2.1.2 Limitations

Because cut-elimination is an important property, many logics have been presented as se-

quent calculi. However, there are several logics for which there is no known cut free sequent

calculus (also referred to as an analytic sequent calculus), e.g. the modal logic S5 [25] or
first-order Gödel logic [26] and calculi which provably have no analytic sequent calculus

presentation [27]. These limitations have prompted generalisations of the sequent calcu-

lus, which do admit analytic calculi of the given logics. One example of a sequent calculus

generalisation is the hyper-sequent calculus6, which admits an analytic presentation of S5
[26].

5Here Γ and Δ are arbitrary contexts, i.e. lists of formulas.
6Another formalism, which is at least as expressive as hyper-sequents [28] is the framework of display

calculi.

8

Another reason formoving away from sequent calculi to display calculi is the cut-elimination

proof itself. In his original paper, Belnap presented the cut-elimination meta-theorem for

arbitrary display calculi. Whereas proofs of cut-elimination in sequent calculi are ad-hoc,

Belnap proved that any display logic satisfying certain easily verifiable conditions on the

rules, such as the aforementioned analyticity, would immediately enjoy the cut-elimination

property.

In other words, a traditional cut-elimination argument for some sequent calculus essentially

involves devising a bespoke algorithm for transforming any proof using the cut rule into a

valid proof without it. Belnap’s meta-theorem, on the other hand, gives a general-recipe

for such a construction, irrespective of the logical connectives or rules7 of the given display

calculus.

2.2 Display calculi

The sequent calculus can be seen as an extension of the language of propositional formulas,

by introducing two layers of terms. Instead of just having conjunction and disjunction at the

level of formulas, we introduce a level of structures with the structural comma, which acts

as a conjunction on the left and disjunction on the right of a turnstile. A natural question

to then ask is, what about introducing structural counterparts for other connectives?

Indeed, extending implication and the truth values to the structural level by introducing

structural counterparts to these operational8 (formula) connectives, we obtain Belnaps’s

display calculus [2].

Structural > < , 𝕀
Operational ⤚ → ⤙ ← ∧ ∨

|−−

| −−

Figure 2.1: Structural counterparts to operational connectives

In the LK sequent calculus, there is only one structural connective, with two introduction
rules, corresponding to the reading of the “,” as a conjunction on the left and disjunction
on the right of the turnstile9:

Γ, 𝐴 , 𝐵 |− Δ ∧𝐿Γ, 𝐴 ∧ 𝐵 |− Δ
Γ |− 𝐴 , 𝐵 , Δ ∨𝑅Γ |− 𝐴 ∨ 𝐵 , Δ

However, no such direct “translation” happens with the implication, where 𝐴 switches to the
7Provided they satisfy the conditions of the cut-elimination meta-theorem.
8The reason why the terminology of structural/operational connectives was chosen by Belnap [2] is not

explained in his paper. The terms operational rules and logical rules are used interchangeably in the literature.
9These rules are slightly tweaked from the original formulation, however, they can be shown to be derivable

from the classic rules of the LK calculus

9

other side of the turnstile:
Γ, 𝐴 |− 𝐵 , Δ →𝑅Γ |− 𝐴 → 𝐵 , Δ

By including a new structural connective “>” in a display calculus, we can reformulate this
rule to one more akin to ∨𝑅 :

𝑋 |− 𝐴 > 𝐵 →𝑅𝑋 |− 𝐴 → 𝐵

As a result, the terms on both sides of the turnstile are no longer list of formulas, but

trees of formulas. Also, notice that the structural connectives, sitting above the operational

connectives in fig. 2.1 are grouped in pairs. Just like having the comma on the left and right

of the turnstile means having either a conjunction or a disjunction, we use the > symbol for
an implication on the right and a co-implication on the left.

Whilst the co-implication is not commonly used (for examples, see the H-B logic of [29] or
paraconsistent propositional logics described in [30]), it arises analogously to the adjunc-

tion between the conjunction and implication on the preorder of propositions. Namely,

because we have the implication as a right adjoint to the conjunction:

𝑎 ∧ 𝑏 |− 𝑐 ⟺ 𝑎 |− 𝑏 → 𝑐

we can also formulate a co-implication as being the left adjoint to the disjunction:

𝑎 ⤚𝑏 |− 𝑐 ⟺ 𝑏 |− 𝑐 ∨ 𝑎

Indeed, adjunctions between the operational connectives are the core idea behind the “dis-

play” in display calculi. As shown above, these adjunctions can be formulated as reversible

display rules:

𝑋 , 𝑌 |− 𝑍(,/>) 𝑌 |− 𝑋 > 𝑍
𝑍 |− 𝑋 , 𝑌 (>/,)𝑋 > 𝑍 |− 𝑌

The term display comes from being able to move structures across the turnstile via these

adjunctions. In this way, one can isolate/display any sub-structure on either the left or

the right side of the turnstile. This is an important property of any display calculus and is

referred to as the display theorem in Belnap’s paper (Theorem 3.2 in [2]).

The display rules together with the display theorem are useful for several reasons; firstly,

we gain a cut-elimination meta-theorem, similar to the cut-elimination arguments for

Gentzen’s sequent calculi, but applicable to a wider range logics (as mentioned earlier).

Secondly, the display framework imposes certain restrictions on the shape of the rules,

which means that the interplay of different connectives via adjunctions and their structural

properties, like commutativity or associativity, are given explicitly via display and structural

rules. This makes display calculi much more modular, as it allows one to customize logics

by adding new connectives and describing their interaction with other ones in a disciplined

10

way. One can also produce sub-structural versions of existing logics by adding or removing

structural rules (such as commutativity) for previously defined connectives.

2.3 Trade-offs

While there are clear advantages to display calculi in terms of modularity, the two levels of

terms (structural and operational) together with the reversible display rules clearly intro-

duce an overhead.

Having the two levels of terms also means having operational rules, which introduce struc-

tural counterparts of operational level connectives, e.g. for disjunction we have:

𝐴 |− 𝑋 𝐵 |− 𝑌∨𝐿 𝐴 ∨ 𝐵 |− 𝑋 , 𝑌
𝑋 |− 𝐴 , 𝐵 ∨𝑅𝑋 |− 𝐴 ∨ 𝐵 (2.1)

All of these rules, taken together, result in large logic formalisms. Take, for example, the

display version of classical logic without quantifiers, which has ~30 rules vs. just 18 for the

LK sequent calculus without quantifiers. For bigger calculi like the DEAK (Dynamic Epistemic
logic of Actions and Knowledge) calculus [7], the number of rules quickly surpasses 100. As
a direct consequence, the complexity and length of proofs increases. In the example below,

the left and right proof trees are a display and sequent calculus proof of ((𝐴 ∨ 𝐵) ∧ ¬𝐵) → 𝐴
respectively:

𝐼𝑑𝐴 |− 𝐴 𝐼𝑑𝐵 |− 𝐵 ∨𝐿𝐴 ∨ 𝐵 |− 𝐴 , 𝐵 (>/,)𝐴 > 𝐴 ∨ 𝐵 |− 𝐵 | −−𝐿| −− |− 𝕀 →𝐿𝐵 → | −− |− (𝐴 > 𝐴 ∨ 𝐵) > 𝕀 ¬𝐵 -def
¬𝐵 |− (𝐴 > 𝐴 ∨ 𝐵) > 𝕀

(, />)
(𝐴 > 𝐴 ∨ 𝐵) , ¬𝐵 |− 𝕀

𝐺𝑟𝑖𝑠ℎ𝑖𝑛𝐿𝐴 > (𝐴 ∨ 𝐵 , ¬𝐵) |− 𝕀
𝕀𝑊𝑅𝐴 > (𝐴 ∨ 𝐵 , ¬𝐵) |− 𝐴
(>/,)

𝐴 ∨ 𝐵 , ¬𝐵 |− 𝐴 , 𝐴
𝐶𝑅𝐴 ∨ 𝐵 , ¬𝐵 |− 𝐴

𝐼𝑑𝐴 |− 𝐴 𝐼𝑑𝐵 |− 𝐵 ∨𝐿𝐴 ∨ 𝐵 |− 𝐴 , 𝐵 𝑃𝑅𝐴 ∨ 𝐵 |− 𝐵 , 𝐴 ¬𝐿𝐴 ∨ 𝐵 , ¬𝐵 |− 𝐴

Note. ¬𝐵 in the left tree is actually an abbreviation for the formula 𝐵 → | −−, since the
display calculus version of classical logic presented here does not have negation as a

primitive.

The fact that proofs in display logics are significantly longer than proofs in sequent calculus

was in fact one of the driving reasons for building the calculus toolbox.

11

2.4 Modal logics and multi-type display calculi

In [31], the authors present a further generalisation of display calculi, by introducing a multi-

type variant of DEAK. The extension presented in this paper is fairly simple, namely, they
introduce formulas and structures at several distinct types. For modal logics, such as the

Public Announcement Logic [32], this is arguably already the case. Take the formula K𝑖 𝐴 in
PAL, which can be interpreted as “agent 𝑖 knows 𝐴”. Here, the type of the connective

K ∶ Ag × F → F

takes two different types, Ag and F, as arguments. We can therefore think of PAL as a (trivial)
multi-type calculus by way of the following grammar:

F ∋ 𝐹 ∶∶= 𝑝 ∣ 𝐹 ∧ 𝐹 ∣ 𝐹 ∨ 𝐹 ∣ ¬𝐹 ∣ K𝑖 𝐹 𝑝 ∈ At , 𝑖 ∈ Ag

However, Ag is just a set of agents rather than inductively defined terms. We get a true
multi-type calculus if the grammar has mutually recursive terms embedded in each other,

like in this sample grammar adapted from [31]:

Fm ∋ 𝐹 ∶∶= 𝑝 ∣ 𝐹 ∧ 𝐹 ∣ 𝐹 ∨ 𝐹 ∣ 𝐹 → 𝐹 ∣ 𝜋 ⇾0 𝐹 ∣ 𝛾 ⇾1 𝐹 ∣ 𝑎 ⇾2 𝐹

Act ∋ 𝛾 ∶∶= 𝑎 ▲▲ 𝜋 𝜋 ∈ Fn 𝑎 ∈ Ag 𝑝 ∈ At

We can see that Act is an inductively defined set of terms much like F, albeit with only one
constructor (in this example).

12

You would not enjoy Nietzsche, sir. He is fundamen-

tally unsound.

P. G. Wodehouse

3
Calculus toolbox

A
s we have seen in the previous section, display calculi generate an overhead

in the number of rules compared to sequent calculi, which has a direct conse-

quence on the size of the proof trees. This is in fact one of the major hurdles

when working display logics, as building proof trees by hand or in LATEX is time consuming

and error prone. The Calculus toolbox, a program for defining and working with display cal-

culi, aims to remedy this by providing a friendly user interface for defining display calculi

and building proof trees which are well typed and exportable to LATEX.

This chapter first gives a use case for the calculus toolbox, followed by a high-level overview

of the graphical interface of the toolbox. Finally, we delve into some of the interesting

implementation details of the front and back-end.

3.1 Muddy children puzzle

The calculus toolbox described in this thesis is actually the second version of the tool. The

first version was presented in our paper [8] and we have since built an improved second

version, described below. This tool is open source and is hosted on github1.

In [8], we not only present the original tool, but demonstrate it’s use in a “real world” setting,

by formalising and proving correct the muddy children puzzle (for a good description and

1https://github.com/goodlyrottenapple/calculus-toolbox-2

13

https://github.com/goodlyrottenapple/calculus-toolbox-2
https://github.com/goodlyrottenapple/calculus-toolbox-2

an informal sketch of a proof, see [33](Ch.1.1)). The statement of the puzzle and all the logical

reasoning was done in DEAK, introduced in the previous chapter, and we fully formalised a
version of this proof given in [34](Prop.24)2. As was already mentioned in sec. 2.3, proof trees

in a display version of a logic can be much longer than in the equivalent sequent calculus.

As a result, writing correct proof trees by hand or in LATEX quickly becomes infeasible.

For effect only, we’ve included the following snippet from our muddy children proof, which

constitutes only a small part of the full proof:

dirty(n, J) ` dirty(n, J)

E(n)k+1vision(n) ` vision(n) E(n)k+1vision(n) ` ⇤jE(n)kvision(n) ^R
E(n)k+1vision(n);E(n)k+1vision(n) ` vision(n) ^⇤jE(n)kvision(n)

CL
E(n)k+1vision(n) ` vision(n) ^⇤jE(n)kvision(n) ^R

dirty(n, J);E(n)k+1vision(n) ` dirty(n, J) ^ vision(n) ^⇤jE(n)kvision(n) ^L
dirty(n, J) ^ E(n)k+1vision(n) ` dirty(n, J) ^ vision(n) ^⇤jE(n)kvision(n)

dirty(n, J); vision(n) ` ⇤j((Dj ! ?) ! dirty(n, J 0))

E(n)kvision(n) ` E(n)kvision(n)
FboxKL⇤jE(n)kvision(n) ` {j}E(n)kvision(n)
FboxKR⇤jE(n)kvision(n) ` ⇤jE(n)kvision(n) ^R

(dirty(n, J); vision(n));⇤jE(n)kvision(n) ` ⇤j((Dj ! ?) ! dirty(n, J 0)) ^⇤jE(n)kvision(n)
AL

dirty(n, J); vision(n);⇤jE(n)kvision(n) ` ⇤j((Dj ! ?) ! dirty(n, J 0)) ^⇤jE(n)kvision(n)
(; , >)

vision(n);⇤jE(n)kvision(n) ` dirty(n, J) >> ⇤j((Dj ! ?) ! dirty(n, J 0)) ^⇤jE(n)kvision(n) ^L
vision(n) ^⇤jE(n)kvision(n) ` dirty(n, J) >> ⇤j((Dj ! ?) ! dirty(n, J 0)) ^⇤jE(n)kvision(n)

(; , >)
dirty(n, J); vision(n) ^⇤jE(n)kvision(n) ` ⇤j((Dj ! ?) ! dirty(n, J 0)) ^⇤jE(n)kvision(n) ^L
dirty(n, J) ^ vision(n) ^⇤jE(n)kvision(n) ` ⇤j((Dj ! ?) ! dirty(n, J 0)) ^⇤jE(n)kvision(n)

Dj ` Dj

? ` I ?R? ` ? !L
Dj ! ? ` Dj >> ? !R
Dj ! ? ` Dj ! ? dirty(n, J 0) ` dirty(n, J 0) !L
(Dj ! ?) ! dirty(n, J 0) ` Dj ! ? >> dirty(n, J 0) !R
(Dj ! ?) ! dirty(n, J 0) ` (Dj ! ?) ! dirty(n, J 0)

FboxKL⇤j((Dj ! ?) ! dirty(n, J 0)) ` {j}(Dj ! ?) ! dirty(n, J 0)
Back forw K

{

j

} ⇤j((Dj ! ?) ! dirty(n, J 0)) ` (Dj ! ?) ! dirty(n, J 0)

E(n)kvision(n) ` E(n)kvision(n)
FboxKL⇤jE(n)kvision(n) ` {j}E(n)kvision(n)
Back forw K

{

j

} ⇤jE(n)kvision(n) ` E(n)kvision(n)
^R

{

j

} ⇤j((Dj ! ?) ! dirty(n, J 0)); {

j

} ⇤jE(n)kvision(n) ` ((Dj ! ?) ! dirty(n, J 0)) ^ E(n)kvision(n)
KmonL

{

j

}

(⇤j((Dj ! ?) ! dirty(n, J 0));⇤jE(n)kvision(n)) ` ((Dj ! ?) ! dirty(n, J 0)) ^ E(n)kvision(n)
Back forw K2

⇤j((Dj ! ?) ! dirty(n, J 0));⇤jE(n)kvision(n) ` {j}((Dj ! ?) ! dirty(n, J 0)) ^ E(n)kvision(n)
^L⇤j((Dj ! ?) ! dirty(n, J 0)) ^⇤jE(n)kvision(n) ` {j}((Dj ! ?) ! dirty(n, J 0)) ^ E(n)kvision(n)
FboxKR⇤j((Dj ! ?) ! dirty(n, J 0)) ^⇤jE(n)kvision(n) ` ⇤j(((Dj ! ?) ! dirty(n, J 0)) ^ E(n)kvision(n))

Dj ` Dj

? ` I ?R? ` ? !L
Dj ! ? ` Dj >> ? !R
Dj ! ? ` Dj ! ? dirty(n, J 0) ` dirty(n, J 0) !L
(Dj ! ?) ! dirty(n, J 0) ` Dj ! ? >> dirty(n, J 0) !R
(Dj ! ?) ! dirty(n, J 0) ` (Dj ! ?) ! dirty(n, J 0)

E(n)kvision(n) ` E(n)kvision(n)
W <L

Dj ! ? ` E(n)kvision(n) << E(n)kvision(n)
(; , <)

Dj ! ?;E(n)kvision(n) ` E(n)kvision(n)
(; , >)

E(n)kvision(n) ` Dj ! ? >> E(n)kvision(n) !R
E(n)kvision(n) ` (Dj ! ?) ! E(n)kvision(n)

^R
(Dj ! ?) ! dirty(n, J 0);E(n)kvision(n) ` ((Dj ! ?) ! dirty(n, J 0)) ^ ((Dj ! ?) ! E(n)kvision(n))

^L
((Dj ! ?) ! dirty(n, J 0)) ^ E(n)kvision(n) ` ((Dj ! ?) ! dirty(n, J 0)) ^ ((Dj ! ?) ! E(n)kvision(n))

FboxKL⇤j(((Dj ! ?) ! dirty(n, J 0)) ^ E(n)kvision(n)) ` {j}((Dj ! ?) ! dirty(n, J 0)) ^ ((Dj ! ?) ! E(n)kvision(n))
FboxKR⇤j(((Dj ! ?) ! dirty(n, J 0)) ^ E(n)kvision(n)) ` ⇤j(((Dj ! ?) ! dirty(n, J 0)) ^ ((Dj ! ?) ! E(n)kvision(n)))

Dj ` Dj

? ` I ?R? ` ? !L
Dj ! ? ` Dj >> ? !R
Dj ! ? ` Dj ! ? dirty(n, J 0) ` dirty(n, J 0) !L
(Dj ! ?) ! dirty(n, J 0) ` Dj ! ? >> dirty(n, J 0)

(; , >)
Dj ! ?; (Dj ! ?) ! dirty(n, J 0) ` dirty(n, J 0)

Dj ` Dj

? ` I ?R? ` ? !L
Dj ! ? ` Dj >> ? !R
Dj ! ? ` Dj ! ? E(n)kvision(n) ` E(n)kvision(n) !L
(Dj ! ?) ! E(n)kvision(n) ` Dj ! ? >> E(n)kvision(n)

(; , >)
Dj ! ?; (Dj ! ?) ! E(n)kvision(n) ` E(n)kvision(n)

EL
(Dj ! ?) ! E(n)kvision(n);Dj ! ? ` E(n)kvision(n)

^R
(Dj ! ?; (Dj ! ?) ! dirty(n, J 0)); (Dj ! ?) ! E(n)kvision(n);Dj ! ? ` dirty(n, J 0) ^ E(n)kvision(n)

EL
((Dj ! ?) ! E(n)kvision(n);Dj ! ?);Dj ! ?; (Dj ! ?) ! dirty(n, J 0) ` dirty(n, J 0) ^ E(n)kvision(n)

AL
(Dj ! ?) ! E(n)kvision(n);Dj ! ?;Dj ! ?; (Dj ! ?) ! dirty(n, J 0) ` dirty(n, J 0) ^ E(n)kvision(n)

EL
(Dj ! ?;Dj ! ?; (Dj ! ?) ! dirty(n, J 0)); (Dj ! ?) ! E(n)kvision(n) ` dirty(n, J 0) ^ E(n)kvision(n)

(; , <)
Dj ! ?;Dj ! ?; (Dj ! ?) ! dirty(n, J 0) ` dirty(n, J 0) ^ E(n)kvision(n) << (Dj ! ?) ! E(n)kvision(n)

AL
(Dj ! ?;Dj ! ?); (Dj ! ?) ! dirty(n, J 0) ` dirty(n, J 0) ^ E(n)kvision(n) << (Dj ! ?) ! E(n)kvision(n)

(; , <)
Dj ! ?;Dj ! ? ` (dirty(n, J 0) ^ E(n)kvision(n) << (Dj ! ?) ! E(n)kvision(n)) << (Dj ! ?) ! dirty(n, J 0)

CL
Dj ! ? ` (dirty(n, J 0) ^ E(n)kvision(n) << (Dj ! ?) ! E(n)kvision(n)) << (Dj ! ?) ! dirty(n, J 0)

(; , <)
Dj ! ?; (Dj ! ?) ! dirty(n, J 0) ` dirty(n, J 0) ^ E(n)kvision(n) << (Dj ! ?) ! E(n)kvision(n)

(; , <)
(Dj ! ?; (Dj ! ?) ! dirty(n, J 0)); (Dj ! ?) ! E(n)kvision(n) ` dirty(n, J 0) ^ E(n)kvision(n)

AL
Dj ! ?; (Dj ! ?) ! dirty(n, J 0); (Dj ! ?) ! E(n)kvision(n) ` dirty(n, J 0) ^ E(n)kvision(n)

(; , >)
(Dj ! ?) ! dirty(n, J 0); (Dj ! ?) ! E(n)kvision(n) ` Dj ! ? >> dirty(n, J 0) ^ E(n)kvision(n) !R
(Dj ! ?) ! dirty(n, J 0); (Dj ! ?) ! E(n)kvision(n) ` (Dj ! ?) ! dirty(n, J 0) ^ E(n)kvision(n)

^L
((Dj ! ?) ! dirty(n, J 0)) ^ ((Dj ! ?) ! E(n)kvision(n)) ` (Dj ! ?) ! dirty(n, J 0) ^ E(n)kvision(n)

FboxKL⇤j(((Dj ! ?) ! dirty(n, J 0)) ^ ((Dj ! ?) ! E(n)kvision(n))) ` {j}(Dj ! ?) ! dirty(n, J 0) ^ E(n)kvision(n)
FboxKR⇤j(((Dj ! ?) ! dirty(n, J 0)) ^ ((Dj ! ?) ! E(n)kvision(n))) ` ⇤j((Dj ! ?) ! dirty(n, J 0) ^ E(n)kvision(n))

Dj ` Dj

? ` I ?R? ` ? !L
Dj ! ? ` Dj >> ? !R
Dj ! ? ` Dj ! ? dirty(n, J 0) ^ E(n)kvision(n) ` [fathern][non]k⇤j0Dj0 !L
(Dj ! ?) ! dirty(n, J 0) ^ E(n)kvision(n) ` Dj ! ? >> [fathern][non]k⇤j0Dj0 !R
(Dj ! ?) ! dirty(n, J 0) ^ E(n)kvision(n) ` (Dj ! ?) ! [fathern][non]k⇤j0Dj0

FboxKL⇤j((Dj ! ?) ! dirty(n, J 0) ^ E(n)kvision(n)) ` {j}(Dj ! ?) ! [fathern][non]k⇤j0Dj0
FboxKR⇤j((Dj ! ?) ! dirty(n, J 0) ^ E(n)kvision(n)) ` ⇤j((Dj ! ?) ! [fathern][non]k⇤j0Dj0)

Dj ` Dj

? ` I ?R? ` ? !L
Dj ! ? ` Dj >> ? !R
Dj ! ? ` Dj ! ?

W >R
father(n) ` Dj ! ? >> Dj ! ?

(; , >)
Dj ! ?; father(n) ` Dj ! ?

^L
(Dj ! ?) ^ father(n) ` Dj ! ? [fathern][non]k⇤j0Dj0 ` [fathern][non]k⇤j0Dj0 !L

(Dj ! ?) ! [fathern][non]k⇤j0Dj0 ` (Dj ! ?) ^ father(n) >> [fathern][non]k⇤j0Dj0 !R
(Dj ! ?) ! [fathern][non]k⇤j0Dj0 ` (Dj ! ?) ^ father(n) ! [fathern][non]k⇤j0Dj0

FboxKL⇤j((Dj ! ?) ! [fathern][non]k⇤j0Dj0) ` {j}(Dj ! ?) ^ father(n) ! [fathern][non]k⇤j0Dj0
FboxKR⇤j((Dj ! ?) ! [fathern][non]k⇤j0Dj0) ` ⇤j((Dj ! ?) ^ father(n) ! [fathern][non]k⇤j0Dj0)

Dj ` Dj

? ` I ?R? ` ? !L
Dj ! ? ` Dj >> ? !R
Dj ! ? ` Dj ! ? father(n) ` father(n)

^R
Dj ! ?; father(n) ` (Dj ! ?) ^ father(n)

^L
(Dj ! ?) ^ father(n) ` (Dj ! ?) ^ father(n) [fathern][non]k⇤j0Dj0 ` [fathern][non]k⇤j0Dj0 !L

(Dj ! ?) ^ father(n) ! [fathern][non]k⇤j0Dj0 ` (Dj ! ?) ^ father(n) >> [fathern][non]k⇤j0Dj0 !R
(Dj ! ?) ^ father(n) ! [fathern][non]k⇤j0Dj0 ` (Dj ! ?) ^ father(n) ! [fathern][non]k⇤j0Dj0

FboxKL⇤j((Dj ! ?) ^ father(n) ! [fathern][non]k⇤j0Dj0) ` {j}(Dj ! ?) ^ father(n) ! [fathern][non]k⇤j0Dj0
FboxKR⇤j((Dj ! ?) ^ father(n) ! [fathern][non]k⇤j0Dj0) ` ⇤j((Dj ! ?) ^ father(n) ! [fathern][non]k⇤j0Dj0)
Cut⇤j((Dj ! ?) ! [fathern][non]k⇤j0Dj0) ` ⇤j((Dj ! ?) ^ father(n) ! [fathern][non]k⇤j0Dj0)

Cut⇤j((Dj ! ?) ! dirty(n, J 0) ^ E(n)kvision(n)) ` ⇤j((Dj ! ?) ^ father(n) ! [fathern][non]k⇤j0Dj0)
Cut⇤j(((Dj ! ?) ! dirty(n, J 0)) ^ ((Dj ! ?) ! E(n)kvision(n))) ` ⇤j((Dj ! ?) ^ father(n) ! [fathern][non]k⇤j0Dj0)

Cut⇤j(((Dj ! ?) ! dirty(n, J 0)) ^ E(n)kvision(n)) ` ⇤j((Dj ! ?) ^ father(n) ! [fathern][non]k⇤j0Dj0)
Cut⇤j((Dj ! ?) ! dirty(n, J 0)) ^⇤jE(n)kvision(n) ` ⇤j((Dj ! ?) ^ father(n) ! [fathern][non]k⇤j0Dj0)

Cut
dirty(n, J) ^ vision(n) ^⇤jE(n)kvision(n) ` ⇤j((Dj ! ?) ^ father(n) ! [fathern][non]k⇤j0Dj0)

Cut
dirty(n, J) ^ E(n)k+1vision(n) ` ⇤j((Dj ! ?) ^ father(n) ! [fathern][non]k⇤j0Dj0)

Whilst this proof tree would be infeasible to typeset by hand, we only needed to provide

the root of this proof tree to the calculus toolbox and then used the toolbox to construct

the rest of the tree. Below, we give details on how this works, by describing the proof tree

editor that is used to build such a tree.

3.2 Tree editor

In this section, we describe the main feature of the toolbox, the proof tree editor, pictured

below.

To start building a proof tree from the root to the leafs (bottom up), the user enters the

sequent they wish to prove, using user defined ASCII syntax. The tree can then be modified,

2The formalised proof can be found at https://github.com/goodlyrottenapple/muddy-children

14

https://github.com/goodlyrottenapple/muddy-children

by clicking on any node in the tree and choosing to either delete the nodes above, add a

new node, apply the cut rule (where the user is first prompted to enter the cut formula) or

perform an automatic proof search.

The proof tree editor acts as a proof assisntant, as selecting ‘Add above’ brings up a list of all

rules applicable to the current node. In the example below, the tool lists all the applicable

rules to the sequent 𝐴 ∧ 𝐵 |− 𝐴:

The proof search algorithm is a simple bounded depth first search which sequentially tries

all applicable rules and backtracks if the depth limit is reached before a proof for the current

branch is found. As it is undecidable whether or not a display calculus is decidable [3], the

toolbox provides no guarantees that the proof-search will be successfull, and in fact the

tool is only capable of findings simple proof trees, before the search space becomes too

large.

3.3 Calculus editor

Because the calculus toolbox is meant to be an editor for arbitrary display calculi, the other

major component of the toolbox is the calculus editor, which allows the user to define and

edit display calculi. The user specifies the grammar of the formulas 𝐹 and structures 𝑆 of
the logic in the Calculus Definition window.

15

The user defines each operational/formula connective and structural connective in a

Haskell-like language. For example, the connective

∧ ∶ 𝐹 → 𝐹 → 𝐹

is encoded as

and : formula <-ك formula <-ك formula ("_/_",LeftAssoc,2,"#1\land#2")

The additional parameters, given after the type signature, namely the ASCII parsing syntax

"_/_", associativity LeftAssoc, fixity 2 and LATEX syntax "#1 \land #2" are the used
to generate the parser and pretty printer used in the tree editor window. The ASCII syntax

is also used later to define the rules. For example, the rules 2.1 from the previous chapter

are encoded as:

A |- X B |- Y
---------------- orL ("\vee_L")
A \/ B |- X , Y

X |- A , B
----------- orR ("\vee_R")
X |- A \/ B

Unlike the original calculus toolbox, this version supports multi-type display calculi, de-

scribed in sec. 2.4. As a result, the user must specify at least one default type (in this exam-

ple it’s type Fm). One can then introduce further types which can be given as parameters
in the types of operational/structural connectives:

16

type Fn
trZer : formula{Fn} <-ك formula <-ك formula (...كك)

The snippet above is actually shorthand for the following full definition, where the unanno-

tated formulas are associated with the given default type Fm:

trZer : formula{Fn} <-ك formula{Fm} <-ك formula{Fm} (...كك)

3.4 Internal representation

The original version of the toolbox used a JSON file to specify the syntax and rules of a

display calculus and required the user to recompile the toolbox every time a change was

made. This was a time consuming and brittle process, as it relied on calling several different

tools and compilers (see fig. 3.1). To streamline this process, we rewrote the core of the tool

in Haskell. This allowed us to simplify the definition language for the display calculi and

instead of using JSON, we switched to a Haskell like syntax, described briefly above. We

also wrote a custom parser generator and switched to a modular internal representation

of sequents and trees, essentially writing an interpreter for display calculi which could be

modified and updated at runtime. This greatly reduced the compilation speed (minutes vs

less than a second) and made for a more robust system with better user error messages.

We use the following Haskell data type (shown slightly simplified) to encode any term of a

user defined calculus:

data Term (l ::ك Level) (k ::ك TermKind) where
Base ::ك Text <-ك Term 'AtomL 'ConcreteK
Meta ::ك SingI l ׆ك Text <-ك Term l 'MetaK
Lift ::ك SingI l ׆ك Term (Lower l) k <-ك Term l k
Con ::ك (KnownNat n, SingI l, IsAtom l ~ 'False) ׆ك

Conn l n <-ك Vec n (Term l k) <-ك Term l k

This data type represents formulas and structures, which can either be concrete terms

(e.g. 𝑖𝑠𝑆𝑢𝑛𝑛𝑦 → ¬𝑖𝑠𝑅𝑎𝑖𝑛𝑖𝑛𝑔) or meta variables, which appear in rules, like 𝐴 or 𝑋 in 2.1.

In full detail:

• The Base constructor is used for building concrete atoms, like 𝑖𝑠𝑆𝑢𝑛𝑛𝑦. Internally,
the tool uses strings to represent atoms.

• The Meta constructor is used for meta variables, used in the definitions of rules.
• The Lift constructor promotes an atom to a formula or a formula to a structure.

This is usually done implicitly in the informal descriptions of the grammar and the

toolbox can automatically parse and deduce the appropriate level of all terms.

17

Load calculus
description file

Generate parser class
for core calculus

Generate core
calculus Isabelle theory

Generate print class
for core calculus

Export Scala version
of core calculus

Compile Scala classes

Parse calculus
rules into Isabelle

Generate calculus
rules Isabelle theory

Rebuild parser class
for full calculus

Rebuild print class
for full calculus

Export Scala
version of full calculus

Compile Scala classes

Generate Scala UI classes

Figure 3.1: Original toolbox compilation process

• The Con constructor encodes connectives of arbitrary arity. It uses a length indexed
vector type to ensure that the connective with a given arity is given the right number

of arguments as sub-terms.

3.5 Type checking

Due to the introduction of types, for multi-type display calculi, we need to type-check terms

to ensure that atoms are not assigned two different types and that multi-typed connectives

are given arguments of the correct type. For example, the DEAK calculus contains the fol-
lowing connective:

▲▲ 0 ∶ 𝐹Fn → 𝐹Fm → 𝐹Fm

If we try to type check the term 𝑓 ▲▲ 0 (𝑎 ∧ 𝑓), we get an error, since ∧ has the type 𝐹Fm →
𝐹Fm → 𝐹Fm, so naturally the unification of 𝑓 at type 𝐹Fn and 𝐹Fm fails.

When parsing the rules of the calculus, the type-checking algorithm is also used to disam-

biguate the level of meta-variables. Consider the following rule:

𝑋 |− 𝐴 > 𝐵
𝑋 |− 𝐴 → 𝐵

Knowing that → is an operational/formula connective, we know that the variables 𝐴, 𝐵

18

can only be substituted with formulas, whereas 𝑋 can be an arbitrary structure. Instead of
having to specify this explicitly, the toolbox can infer this information during type-checking,

by keeping a track of the context the meta variables appear in. In the premise of the rule,

𝑋 , 𝐴 and 𝐵 appear in the context of structural connectives. However, in the conclusion, 𝐴
and 𝐵 get “downgraded” to formula variables, because they appear as arguments to ∧. After
type-checking, this information is used to adjust the meta variables accordingly. For special

rules like the Id rule

𝐼𝑑𝑎 |− 𝑎

where we want to stipulate that 𝑎 is an atom, rather than a structure or a formula, we can
explicitly declare an atom meta-variable by prefixing the variable name with at_:

------------ Id
at_a |- at_a

3.6 Front-end

Unlike the back-end, which is written in Haskell, we opted to use JavaScript, namely Electron

and React, for the front-end. The reasoning behind this decision was to try to provide

uniform interface across all the major platforms as well as to potentially make the tool

available online, without the need to download anything. These two considerations made

HTML and JavaScript the ideal candidates to use when building the UI.

To link the front and back-end together, we used a REST API generator framework Servant

to generate an interface the front-end can use to communicate with the Haskell back-end.

This includes functionality such as parsing of user input into display sequents and running

proof search or type-checking of a proof tree built by the UI editor.

The use of Servant allows one to define REST APIs using Haskell’s type-system, ensuring

type safety of an implementation with regards to the specified API. Servant also automat-

ically generates a JavaScript boilerplate library, built for the defined API, which can be

plugged into the front end to ensure that communication between the front and back-

end is implemented correctly. For example, the type API below describes a REST API end-

point parseFormula, which takes a raw ParseTerm string, calls the parser and returns a
parsed formula Term, wrapped together with its LATEX type-setting information inside a

LatexTerm:

type API =

19

https://electronjs.org
https://reactjs.org
https://www.servant.dev

"parseFormula" :>
ReqBody '[JSON] ParseTerm :>
Post '[JSON] (LatexTerm (Term 'FormulaL 'ConcreteK))

The Servant library then generates the following boilerplate JavaScript code from the given

type:

postParseFormula = function(port, body, onSuccess, onError) {
var xhr = new XMLHttpRequest();
xhr.open('POST', `http:ك//localhost:${port}/parseFormula`, true);
...كك
xhr.send(JSON.stringify(body));

};

This function is then used by the front-end to pass raw user input to the Haskell back-

end for parsing. The back-end implements the API functionality by defining the function

parseFormulaHandler:

parseFormulaHandler ::ك ParseTerm <-ك
AppM r (LatexTerm (Term 'FormulaL 'ConcreteK))

parseFormulaHandler ParseTerm{ك..} = ...كك

As the type of this function suggests, the back-end implementation operates on native

Haskell data-types (i.e. ParseTerm), rather than raw JSON. The translation of the request

body and the response is again handled automatically by the Servant library.

3.7 Limitations

Whilst the second version of the toolbox introduced new features like the ability to define

multi-type display calculi and streamlined the process of recompiling calculi, there are cer-

tain limitations which became apparent when trying to use the tool to formalise a display

version of first order logic with quantifiers DFOL[35].

Due to the nature of DFOL, the simple type system used in the tool was not powerful enough

to properly describe its connectives. The toolbox also imposes a rigid hierarchy of defini-

tions, i.e. we have 4 levels of terms each nested in the next:

Atom
𝑎

↪ Formula
𝑎 ∧ 𝑏

↪ Structure
𝑎 ∧ 𝑏, 𝑐 ∨ 𝑑

→ Sequent
𝑎 ∧ 𝑏, 𝑐 ∨ 𝑑 |− 𝑒

This hierarchymakes sense when describingmany display logics, however there is no reason

why the toolbox could not be used to build and work with terms of different calculi, not

necessarily following the same format.

Both of these limitations have motivated another version of the toolbox, presented in the

next section.

20

Object-oriented programming is an exceptionally

bad idea which could only have originated in Cali-

fornia.

Edsger Dijkstra

4
Toolbox t3

B
efore we introduce the third iteration of the calculus toolbox, we briefly describe

the DFOL calculus, a display version of first order logic, which guided the design
decisions of the third version of the calculus toolbox.

4.1 FOL displayed

As discussed in ch. 2, the main idea behind display logics is to give operational (formula)

connectives a structural counterpart and introduce display rules which encode the notion

of an adjunction between different connectives. The display version of FOL presented in

[35] (Chapter 4) extends this notion to the universal and existential quantifiers of first order

logic. There is ample literature which explores a modal operator-like interpretation of these

quantifiers, e.g. [36–38]. The formalisation of DFOL in [35] follows the categorical approach
to quantifiers as adjoints, which is described in detail by Lawvere in [39, 40].

In this chapter, we mainly focus on how to define the universal quantifier of DFOL in the
calculus toolbox. In order to do this, we first extend fig. 2.1 with the following operational

and structural connectives to obtain a small fragment of DFOL containing ∀ and ∃:

Structural symbols (𝑥) Q𝑦 [[⃗𝑡]]
Operational symbols ⚬𝑥 ⚬𝑥 ∃𝑦 ∀𝑦 [⃗𝑡] [⃗𝑡]

Figure 4.1: Structural and operational connectives of DFOL

21

Compared to the standard Gentzen calculus, we have two additional operational connec-

tives (and their structural counterparts):

• Q𝑦 𝐴 denotes ∃𝑦 𝐴 on the left of the turnstile and ∀𝑦 𝐴 on the right of the turnstile.
• ⚬𝑥 𝐴 denotes a fresh variable 𝑥 in the formula 𝐴
• [⃗𝑡] 𝐴 represents a list of simultaneous substitutions ⃗𝑡 applied to 𝐹 , where each term
𝑡𝑚 ∈ ⃗𝑡 is associated to a free variable 𝑣𝑚 in 𝐴.

In the usual Gentzen calculus, substitution is usually treated as a meta-operation in the

introduction rules, e.g.:

𝐴[𝑡/𝑥] , Γ |− Δ∀𝐿 ∀𝑥 𝐴 , Γ |− Δ
Γ |− 𝐴[𝑦/𝑥] , Δ ∀𝑅Γ |− ∀𝑥 𝐴 , Δ

In these rules, the term 𝐴[𝑡/𝑥] is not a syntactic object, but rather some 𝐴′ obtained by
substituting 𝑡 for the free variable 𝑥 in 𝐴. However, [⃗𝑡] 𝐴 is a “first class” term in DFOL, which
essentially means we internalise the operation of substitution into the calculus.

Our display version of FOL also differs from most other formalisations in that it is a multi-

type display calculus, which means that the formulas and structures are tagged with types

in a similar way to the terms of DEAK. However, unlike in the case of DEAK, were we only
had 5 types (Fm ,Act , Fn ,Ag ,At), the number of types in DFOL becomes infinite.

This is due to the fact that we take all subsets of free variables as types, giving a formula

the type corresponding to the set of it’s free variables:

𝑓(𝑥, 𝑦) ∶ 𝐹{𝑥,𝑦} ∀𝑥 ∀𝑦 𝑓(𝑥, 𝑦) ∶ 𝐹∅

The new connectives of the calculus thus become heterogeneously typed:

∀𝑦 ∶ 𝐹𝑋 ⊎ {𝑦} → 𝐹𝑋

The type signature of the universal quantifier also implicitly places a side-condition on the

formula 𝐴 in ∀𝑥 𝐴. Since 𝐴 has to have a type 𝐹𝑋 ⊎ {𝑥} , 𝑥 must appear in the set of free
variables of 𝐴 (since the type of a formula is always tagged with it’s free variables) and
becomes bound/hidden when quantified over by ∀. We can reformulate the type signature
above to make this more explicit:

∀𝑦 ∶ 𝐹𝑋 → 𝐹𝑋\{𝑦} with 𝑦 ∈ 𝑋

Already, we can see that the type signatures of DFOL are much more complex than those of
DEAK. Besides needing a richer type-system for describing side conditions like 𝑦 ∈ 𝑋 , the
type signatures above are also dependently typed, that is, the type of the argument to ∀𝑦
depends on the given 𝑦. The universal quantifier can thus be seen as a binary connective,

22

which takes a variable 𝑦 and a formula, where 𝑦 must appear as a free variable:

∀ ∶ (𝑦 ∶ Var) → 𝐹𝑋⊎{𝑦} → 𝐹𝑋

4.2 Dependent types

Trying to implement the definition above presented interesting challenges. Because the

quantifiers have dependent types, we first tried to formalise the calculus in Agda and came

up with this naive definition for the ∀ quantifier :

data F : FSet ℕ → Set where
∀ : {N : FSet ℕ} → (n : ℕ) → F (insert n N) → F N

However, this definition contains a subtle bug, wherein the type insert n X does not

actually preclude X from containing n, which is what we want i.e. we can only quantify over
free variables that actually appear in a formula. The resulting type of a quantified term

should then remove n from the set of free variables. The following definition is in fact the

correct one:

data F : FSet ℕ → Set where
∀ : {N : FSet ℕ} → (x : ℕ) → {_ : isElem x N} →

F N → F (remove n N)

Unfortunately, this definition is still difficult to work with, as it does not take into account

the fact that a list [𝑦, 𝑥] and [𝑥, 𝑦] represent the same underlying set {𝑥, 𝑦}. Once we define
a notion of set equality for lists (≃), which is different to the usual syntactic equality, we
arrive at this final definition:

data F : FSet ℕ → Set where
∀ : {N N₂ : FSet ℕ} → (x : ℕ) → {_ : isElem x N} →

F N → {_ : N₂ ≃ remove x N} → F N₂

Defining ∀ this way, we get a flexible enough definition to work with in Agda. However, in
practice, this formalisation is still cumbersome due to the following limitations:

• there is no basic data-type of (finite) sets for arbitrary types in Agda and formalising

and working with finite sets of names seems like an unnecessary overhead.

• Agda cannot (usually) infer implicit arguments like {_ : isElem x N} and to set
up things in such a way that these arguments are automatically discovered takes a

lot of experience with dependent types and Agda.

23

These two limitations were the driving motivation behind t3, the third iteration of the cal-
culus toolbox. Before delving into details, here is a definition of the ∀ quantifier in t31:

data F : Set Name <-ك Type where
∀ : {N : Set Name} <-ك {N₂ : Set Name} <-ك

(x : Name) <-ك [x ∈ N] <-ك F N <-ك [N₂ ≡ N \\ x] <-ك F N₂
end

In the following section, we will describe the language t3 uses, explaining the details of the
definition above.

4.3 t3 core

At its core, t3 is a version of a dependently typed 𝜆-calculus without the 𝜆, that is, there
is no 𝜆-abstraction or 𝛽-reduction in the calculus. The only terms one can construct are
applications of non-reducible terms, namely type constructors. The language does have

application and function types, as these are needed to define the type constructors of terms.

In the example above, we see three different Π/function types.
The curly braces in the definition above denote implicit arguments, which can be given a

name, such as {N : Set Name}. Implicit arguments will be depended upon by another
type and can often be inferred from this type without the need to be supplied explicitly by

the user.

The Prop type, denoted by square brackets encodes side-conditions, such as 𝑥 ∈ 𝑁 and is
not a dependent type. Props are a subset of types in t3, translatable into an SMT solver
theory. Details of this translation are provided in the following section. Finally, we have

the explicit Π-type which can also be bound to a name and referred to by terms under the
Π. Below, we describe the internal representation of terms of t3, which is again written in
Haskell.

Note. We used Löh et al.’s [41] excellent tutorial, describing how to implement a de-

pendently typed lambda calculus, as a starting point. The data-type representing t3
terms is an extension of the one given in the tutorial.

data Term = StarT
| PropT
| NameT
| MkName Text
| SetT Term
| MkSet Term [Term]
| IntT

1Perhaps confusingly, Agda’s Set is now Type, since we wanted to use Set for finite sets in t3.

24

| MkInt Int
| Π (Maybe Text) Term Term
| IΠ Term Term
| Term :⇒: Term
| Bound Int
| Free Name
| Term :@: [ExplImpl Term]

There are 5 base/built-in types, listed below both in t3 syntax and the corresponding Haskell
core Term:

t3 Haskell

* / Type StarT the type of all types2

Prop PropT the type of propositions/predicates, decidable in an SMT

solver (essentially the Bool type)
Name NameT the type of names, used for variables or constants like 𝑥 or

𝑖𝑠𝑆𝑢𝑛𝑛𝑦
Set a SetT a the type of finite sets, with built-in set equality

Int IntT the type of integers (represented by Haskell’s Int)

Because t3 is dependently typed, there is no separation of terms and types, as one can refer
to types in terms and vice-versa. We use de Bruijn indices for binders, replacing a named

variable with a bound index in the internal representation:

t3 Haskell

{a : *} <-ك Set a IΠ StarT (SetT (Bound 0))

4.4 SMT solvers and the Prop type

As we have seen in the previous section, the Agda and t3 data-type definitions of the ∀ quan-
tifier are almost identical. In this section we focus on the encoding of the side-condition

𝑦 ∈ N, which appears in the type of ∀. In Agda, we encode this side condition as an implicit
argument {_ : isElem x N}, where isElem is itself a regular Agda type encoding finite
set membership:

data isElem {A : Set} : A → List A → Set where
here : ∀ {x y : A} {xs : List A} → y ≡ x → isElem y (x ∷ xs)
there : ∀ {x y : A} {xs : List A} → isElem y xs → isElem y (x ∷ xs)

2We do not have a type hierarchy like in Agda and admit Type : Type

25

However, this turns out to be rather impractical if we want to construct any concrete terms

using the ∀ quantifier, as Agda cannot automatically construct the proof/term of the isElem
type:

Example 4.1. If we want to quantify over a term with a set of free variables {1, 2, 5, 7},
specifically, quantifying over the variable 5, we need to prove that 5 appears in the list
[1, 2, 5, 7]3.

Thus, we need to construct a term of type isElem 5 (1 ∷ 2 ∷ 5 ∷ 7 ∷ []),
which is there (there (here refl)) (the refl constructor witnesses the fact

that 5 ≡ 5).

We could do better by leveraging a “trick” called proof by reflection, described in [42]. Rather

than encoding a property such as elementship in a data-type, we can define a type level

function isElem : ℕ → List ℕ → Set which reduces to the type | −− if the element does
not appear in the list and

|−− otherwise:

isElem : ℕ → List ℕ → Set
isElem x [] = | −−

isElem x (y ∷ xs) with x ?= y
isElem x (y ∷ xs) | yes _ =

|−−

isElem x (y ∷ xs) | no _ = isElem x xs

We can make use of the fact that Agda performs 𝛽-reduction when elaborating terms and
given an element and a concrete list it appears in, isElem? will evaluate to

|−− . Because of
the way

|−− is defined, Agda will in fact be able to infer the value of type

|−− 4.

Whilst proof by reflection is a powerful technique, we believe it is also much more difficult

to engineer than the approach we chose in our tool. Instead of proving propositions like

𝑥 ∈ {𝑧, 𝑥, 𝑦} by directly encoding them as data-types or using proof by reflection, t3 leverages
the power of SMT solvers to automate away such proofs completely.

Given a proposition of a certain type, t3 translates it into SMT-LIB, which is a language for
interfacing with theorem provers such as CVC4 or Z3, and passes it to the CVC4 solver as a

constraint. If, after collecting all the constraints during type-checking, the SMT solver returns

“satisfiable”, the type-checking succeeds. Otherwise, the SMT solver returns the subset of

constraints which are unsatisfiable as an error. We give the propositions translatable into

SMT the type Prop5 in t3.

To make this approach as flexible and modular as possible, we only provide direct transla-

tion to and from SMT-LIB for the built in types Int, Name and Set. We then provide three
3Finite sets are encoded as lists.
4There is in fact only one unique value of type

|−− and Agda knows this, therefore it will always automatically
infer this value.

5Not to be confused with a PROP
::::

, which is an entirely different concept introduced in ch. 7.

26

mechanisms that allow the user to extend this translation to their theories.

The simplest way to interface with the SMT solver is via the smt-builtin command. This
command acts as a wrapper for importing built-in SMT theory functions. For example, CVC4

includes a theory of finite sets6, with definitions of functions and predicates like union,

intersection, membership, etc. To import the set membership predicate into t3, we write:

smt-builtin (∈) [member] : {a : Type} <-ك a <-ك Set a <-ك Prop end

In the code above, we first supply the name of the function/predicate as we want it to

appear in our t3 theory (∈), followed by the name of the function/predicate as it appears in
the SMT-LIB library (in the square brackets). Because t3 is strongly typed, we have to also
include the type of the function/predicate we are importing, in this case {a : Type} <-ك
a <-ك Set a <-ك Prop.

Note. t3 does not check that the type given in the interface actually matches the type
inside the SMT solver and one needs to consult the documentation of the SMT solver

theories to make sure that the type signatures match.

If we want to define more complex functions/predicates, we can use the second available

mechanism smt-def:

smt-def (∉) : {a : Type} <-ك (x : a) <-ك (X : Set a) <-ك Prop where
(not (elem x X))

end

Here we introduce the negated set membership predicate, where the body of the definition

(not (elem x X)) is an SMT-LIB expression. There are some minor differences in the
dialect of lisp used in t3 vs. the SMT-LIB lisp dialect, the main of which is the use of custom
syntax for atoms/keywords. t3 can automatically infer if a name refers to a variable or
a constant, however, prefixing a name with ' makes it explicit that the given name is a
constant7. This extension is a compromise in the way t3 parses definitions like (= a b),
which would otherwise be awkward to parse due to the fact that = is a reserved keyword
and has special parsing rules elsewhere in the language. We can, circumvent the default

rules for = by writing ('= a b) in t3.

Finally, t3 also allows simple data-type8 lifting via the smt-data command:

6For the list of available functions and predicates over finite sets in CVC4, see: http://cvc4.cs.stanford.edu/
wiki/Sets

7We could have also written ('not ('elem x X)).
8Specifically, polymorphic algebraic data-types not containing any dependent types.

27

http://cvc4.cs.stanford.edu/wiki/Sets
http://cvc4.cs.stanford.edu/wiki/Sets

smt-data List : Type <-ك Type where
∅ : {a : Type} <-ك List a

| (;) : {a : Type} <-ك (hd : a) <-ك (tl : List a) <-ك List a
end

Note. When defining a lifted data-type, the user must provide names for all the ar-

guments of each constructor9. This requirement stems from the way data-types are

defined in an SMT solver.

Once the data-type definition has been lifted, it can be used in other smt-defs. CVC4
contains powerful features such as the ability to write recursive function definitions over

user defined data-types, which can then be used in type-checking t3 programs. For an
example of this, see app. A.

4.5 Translation to LATEX

As we have re-iterated throughout this chapter, the main purpose of building the calculus

toolbox is to build (proof) trees. More specifically, our initial motivation was to build proof

trees for display calculi. With t3, we relaxed the structure of trees to be arbitrary algebraic
data-types, such as Gentzen’s sequents, made up of first order formulas. Because t3 is
dependently typed and supports GADTs10, we can encode proof trees as data-types directly

(see app. A for a full example).

Given the following rules of the sequent calculus:

𝐼𝑑 𝑎 |− 𝑎
Γ, 𝐴 |− Δ ∧𝐿1Γ, 𝐴 ∧ 𝐵 |− Δ

we can encode the inference rules as data constructors of the “derivable” data-type |− :

data (|−) : List F <-ك List F <-ك Type where
Id : {a : Name} <-ك

(At a) ; ∅ |− (At a) ; ∅

| AndL1 : {Γ : List F} <-ك {Δ : List F} <-ك {A : F} <-ك {B : F} <-ك
A ; Γ |− Δ

<-ك ---------------
(A ∧ B) ; Γ |− Δ

We can then build valid proof trees as definitions in t3:

9This is similar to defining a record type in Haskell.
10Generalised algebraic data-types

28

def pt : At 'a ∨ At 'b ; ∅ |− At 'a ∨ At 'b ; ∅ where
CR (OrL

{∅} {∅}
{At 'a ∨ At 'b ; ∅} {At 'a ∨ At 'b ; ∅}
(OrR1 Id) (OrR2 Id))

end

To allow for incremental construction of proof trees in a fashion, similar to the previous

versions of the calculus toolbox, t3 allows the user to build partial terms using “holes” (much
like in Agda). For a definition like the one above, the user would generally first define the

type of the term and leave the body undefined by indicating a hole with ?.

def pt : At 'a ∨ At 'b ; ∅ |− At 'a ∨ At 'b ; ∅ where
CR ?

end

Elaborating the definition above, t3 infers the type of the hole:

================================
?0 : At 'a ∨ At 'b ; ∅ |− At 'a ∨ At 'b ; At 'a ∨ At 'b ; ∅
================================

This way we can produce the proof tree step by step, using t3 as a guide. Once we build the
proof tree, the final feature of t3 allows us to pretty print it in LATEX or in fact any other

user-defined syntax, once we provide t3 with a translation function:

language LaTeX

translation (|−) to LaTeX where
Id : x |− y <-ك "\AXC{}\RightLabel{Id}\n\UIC{$ك#{x}\vdashك#{y}$}"

end

The translation definition allows simple pattern matching on all the constructors of a
given data-type and uses basic string interpolation to place arguments x and y into the
string on the right-hand side of the pattern.

Note. t3 tries to recursively find and apply the translations to all nested terms within
a data-type. If such translation was not defined, it defaults to outputing t3 syntax.

Once we have defined the translation for all the given data-types, we can write translate
pt to LaTeX end, which produces:

\AXC{}\RightLabel{Id}
\UIC{$\cons{a}{} \vdash \cons{a}{}$}\RightLabel{$\vee_{R1}$}
\UIC{$\cons{a}{} \vdash \cons{a \vee b}{}$}
\AXC{}\RightLabel{Id}
\UIC{$\cons{b}{} \vdash \cons{b}{}$}\RightLabel{$\vee_{R2}$}
\UIC{$\cons{b}{} \vdash \cons{a \vee b}{}$}\RightLabel{$\vee_{L}$}

29

\BIC{$\cons{a \vee b}{} \vdash \cons{a \vee b}{\cons{a \vee b}{}}$}
\RightLabel{C_R}
\UIC{$\cons{a \vee b}{} \vdash \cons{a \vee b}{}$}

Typeset in LATEX, this produces the following proof tree:

𝐼𝑑𝑎 |− 𝑎 ∨𝑅1𝑎 |− 𝑎 ∨ 𝑏
𝐼𝑑𝑏 |− 𝑏 ∨𝑅2𝑏 |− 𝑎 ∨ 𝑏 ∨𝐿𝑎 ∨ 𝑏 |− 𝑎 ∨ 𝑏 , 𝑎 ∨ 𝑏 𝐶𝑅𝑎 ∨ 𝑏 |− 𝑎 ∨ 𝑏

30

They want you to believe the Sun is hot. I urge you to

ask yourself ’Have they ever touched it?’ Think about it.

Jaden Smith

II
Nominal string diagrams

31

.

5
Introduction

O
ur motivation for introducing nominal string diagrams has been formulated by

the slogan ‘only connectivity matters’1. In the ordinary setting, this is achieved

by ordering input and output wires of string diagrams and using their ordinal

numbers as implicit names. We write 𝑛 = {1, … 𝑛} to denote the set of 𝑛 numbered wires
and 𝑓 ∶ 𝑛 → 𝑚 for diagrams 𝑓 with 𝑛 inputs and 𝑚 outputs. On the other hand, if only

connectivity matters, it is natural to consider a formalisation of string diagrams in which

wires are named, rather than ordered. Thus, instead of ordering wires, we fix a countably

infinite set N of ‘names’ 𝑎, 𝑏, …, on which the only supported operation or relation is equality.

In this part of the thesis, we explore two approaches to giving a formal (categorical) defi-

nition to named string diagrams. In ch. 6, we define a general notion of partial monoidal

categories, which allow us to account for the use of named wires.

The following ch. 7 focuses more closely on the ‘nominal’ aspect of nominal string diagrams

by presenting them as categories internal in the category of nominal sets, introduced by

Gabbay and Pitts [23, 24, 43].

Calculus of simultaneous substitutions

As we already mentioned in ch. 1, the driving motivation behind formalising nominal string

diagrams was to develop a calculus of simultaneous substitutions. The advantages of a

2-dimensional calculus for simultaneous substitutions over a 1-dimensional calculus are

the following.

1see [20] sec. 10.1

32

A calculus of substitutions is an algebraic representation, up to isomorphism, of the

category n𝔽
::

of finite subsets of N . In a 1-dimensional calculus, operations [𝑎↦𝑏] have to
be indexed by finite sets 𝑆

[𝑎↦𝑏]𝑆 ∶ 𝑆 ∪ {𝑎} → 𝑆 ∪ {𝑏}

for sets 𝑆 with 𝑎, 𝑏 ∉ 𝑆.

On the other hand, in a 2-dimensional calculus with an explicit operation ⊎ for set union,
indexing with subsets 𝑆 is unnecessary. Moreover, while the swapping

[𝑎↦𝑏, 𝑏↦𝑎] ∶ {𝑎, 𝑏} → {𝑎, 𝑏}

in the 1-dimensional calculus needs an auxiliary name such as 𝑐 in [𝑎↦𝑐]{𝑏} ; [𝑏↦𝑎]{𝑐} ; [𝑐↦𝑎]{𝑏}
it is represented in the 2-dimensional calculus directly by

[𝑎↦𝑏] ⊎ [𝑏↦𝑎]

Finally, while it is possible to write down the equations and rewrite rules for the 1-

dimensional calculus, it does not appear as particularly natural. In particular, only in the

2-dimensional calculus, will the swapping have a simple normal form such as [𝑎↦𝑏]⊎[𝑏↦𝑎]
(unique up to commutativity of ⊎).

Symmetries in the nominal setting

From a graphical point of view, the move from ordered wires to named wires means that we

no longer need to consider wire-crossings, or more techincally, there are no symmetries to

take care of. This can simplify the rewrite rules of calculi formulated in the named setting.

For example, rules such as

=

are not needed anymore. For more on this compare figs. 7.3, 7.4.

For a geometric intutition, there should be a result analogous to the note after Theorem 3.12

in [44], where ismorphism of nominal string diagrams can be seen as equivalent to ambient

isotopy in 4 dimensions (also see Chapter 3 in [13]), though we have not investigated this

fully.

Partial commutative vs total symmetric tensor

One reason why ordered names/wires are convenient is that the tensor +○ is given by the

33

categorical coproduct (addition) in the skeleton 𝔽
:
of the category of finite sets n𝔽

::
. Even

though 𝑛 +○ 𝑚 = 𝑚 +○ 𝑛 on objects, the tensor is not commutative but only symmetric,
since the canonical arrow 𝑛 +○ 𝑚 → 𝑚 +○ 𝑛 is not the identity.

On the other hand, in the category n𝔽
::

of finite subsets of N, there is a commutative tensor
𝐴 ⊎ 𝐵 given by union of disjoint sets. The feature that makes commutativity possible is that
⊎ is partial with 𝐴 ⊎ 𝐵 defined if and only if 𝐴 ∩ 𝐵 = ∅.

In order to define these partial tensors in the context of category theory, ch. 6 introduces the

notion of partial monoidal categories. The chapter then goes on to define a specific partial

monoidal category, corresponding to the 2-dimensional calculus of simultaneous substitu-

tions. The calculus we propose is given in fig. 6.2 and we prove it sound and complete w.r.t.

n𝔽
::
.

Overview

To summarise, sec. 6.1 introduces partially monoidal categories, sec. 6.2 defines the syntax

and semantics of our language of named string diagrams and sec. 6.3 and sec. 6.4 show

completeness of the axiomatisations of, respectively, bijections and functions. sec. 6.5 gives

a short account of the software we developed to support the mathematical reasoning of this

chapter.

Giving an alternative account of partial tensors, sec. 7.2 develops the notion of a monoidal

category internal in another (monoidal) category. sec. 7.3 is devoted to examples, while

sec. 7.4 introduces the notion of a nominal PROP
::::

, sec. 7.5 shows that the categories of

ordinary and of nominal PROP
::::

s are equivalent and sec. 7.6 provides a way of translating

ordinary string diagrams into nominal ones and vice versa.

34

καὶ ἐπὶ τῶν κατὰ τὴν συνουσίαν ἐντερίου

παράτριψις καὶ μετά τινος σπασμοῦ μυξαρίου

ἔκκρισις.

Marcus Aurelius

6
Partially monoidal string diagrams

T
his chapter has been adapted from the paper Partially monoidal categories and

the algebra of simultaneous substitutions. The paper is joint work with my

supervisor Alexander Kurz. This paper wasn’t originally published, as it was in

some respects supplanted by [45], presented in its extended version in ch. 7.

6.1 Partially monoidal categories

Partial monoids play a role in many different areas of mathematics and computer science.

One typical reason for partiality is the one also appearing in resource sensitive logics such

as separation logic: If 𝑓 ∶ 𝐻 → ℕ and 𝑓′ ∶ 𝐻′ → ℕ are two partial functions from pieces

𝐻, 𝐻′ of the memory, then they can be added if 𝐻 and 𝐻′ are disjoint.

In the literature, there are slightly different notions of a partial monoid, depending on the

role of the neutral element. A partial monoid can have no neutral element, one neutral

element, or many neutral elements (for an example of this, see the definition of a grupoid,

first introduced in [46]).

In the following definition, we write .= to say that both sides are equal if either side is defined
(hence, one side is defined if and only if the other side is).

Definition 6.1. A partial semigroup (𝐴, ×○, 𝐷) consists of a binary operation ×○, defined

35

https://gdlyrttnap.pl/resources/papers/syco1.pdf
https://gdlyrttnap.pl/resources/papers/syco1.pdf

on 𝐷 ⊆ 𝐴 × 𝐴 such that for all 𝑎, 𝑏, 𝑐 ∈ 𝐴 the following

(𝑎 ×○ 𝑏) ×○ 𝑐 .= 𝑎 ×○ (𝑏 ×○ 𝑐)

A partial monoid (𝐴, 𝑒, ×○, 𝐷) has, moreover, a constant 𝑒 for which

𝑒 ×○ 𝑎 .= 𝑎

𝑎 ×○ 𝑒 .= 𝑎

These structures are called commutative if 𝑎 ×○ 𝑏 .= 𝑏 ×○ 𝑎.

As explained in the introduction, we are interested in partially monoidal categories. As our

examples in this paper are strict, we can give the following simplified definition.

Definition 6.2. A (strict) partially monoidal category, or p-monoidal
::::::::::

category, consists

of

• a category 𝐴 = (𝐴0, 𝐴1) with sets 𝐴0 of objects and 𝐴1 of arrows and
• partial monoids (𝐴0, 𝑒, ×○, 𝐷0) and (𝐴1, id𝑒, ×○, 𝐷1)
• such that 𝐷 = (𝐷0, 𝐷1) is a subcategory of 𝐴 × 𝐴
• and ×○ is a functor 𝐷 → 𝐴.

The category is called commutative p-monoidal
::::::::::

if the two partial monoids are com-

mutative. A strict partially monoidal functor is a functor 𝐹 such that 𝐹(𝑒) = 𝑒 and
𝐹(𝑎 ×○ 𝑎′) = 𝐹(𝑎) ×○ 𝐹(𝑎′) whenever 𝑎 ×○ 𝑎′ is defined. The p-monoidal

::::::::::
categories

along with p-monoidal
::::::::::

functors themselves form a category.

Remark 6.3. In the examples of this paper, the third bullet point could be strengthened
to say that 𝐷 is a full subcategory, that is, two arrows can be composed by ×○ whenever

their domains and codomains can be composed.

The fourth bullet point entails the interchange law

(𝑓1 ×○ 𝑓2)#(𝑔1 ×○ 𝑔2)
.= (𝑓1#𝑔1) ×○ (𝑓2#𝑔2) (6.1)

whenever (𝑓1, 𝑓2) ∈ 𝐷 and (𝑔1, 𝑔2) ∈ 𝐷.

Here, in the partially monoidal situation, the right-hand side may be defined without

the left-hand side being defined. In particular, it will not always be possible to ‘slice

up’ a string diagram in the familiar fashion, see the slashed red line in eq. 6.3 or eq. 6.4

for examples.

36

We write .= to emphasise that this interchange law is weaker than the one for

2-categories, which holds whenever either one of the two sides is defined, see Mac

Lane [47](Ch.XII.5).

Similarly to Mac Lane [47], we also give a one-sorted formulation of partially monoidal

categories.

Proposition 6.4. The data of a partially monoidal category can also be described as
a category (𝐶, 𝑠, 𝑡, #) in the sense of (1-4) of [47](Ch.XII.5, p.297) equipped with a par-
tial monoid (𝐶, 𝜀, ×○, 𝐷) where 𝐷 restricts to a subcategory of (𝐶, 𝑠, 𝑡, #) satisfying the
equations

𝑠(𝑐 ×○ 𝑐′) .= 𝑠(𝑐) ×○ 𝑠(𝑐′)

𝑡(𝑐 ×○ 𝑐′) .= 𝑡(𝑐) ×○ 𝑡(𝑐′)

and the interchange law (eq. 6.1).

Proof. Given the data of the proposition, we reconstruct the data from def. 6.2 as fol-

lows. Let 𝐷1 = 𝐷 be the domain of definition of ×○. Define 𝐴0 = {𝑠(𝑓) ∣ 𝑓 ∈ 𝐶} =
{𝑡(𝑓) ∣ 𝑓 ∈ 𝐶} and 𝐴1 = 𝐶. All of 𝜀, 𝑠(𝜀), 𝑡(𝜀) are identities on 𝐴0 w.r.t. ×○, hence we can
define 𝑒 = 𝜀 = 𝑠(𝜀) = 𝑡(𝜀) to obtain the partial monoid (𝐴0, 𝑒, ×○, 𝐷0) with 𝐷0 being the
restriction of 𝐷1 to 𝐴0. It also follows that 𝜀 = id𝑒, hence (𝐴1, id𝑒, ×○, 𝐷1) is the other
monoid. And ×○ is a functor since it preserves identities by definition and preserves

composition due to the interchange law.

A 2-category (𝐶0, 𝐶1, 𝐶2) almost becomes a p-monoidal::::::::::
category by taking the arrows 𝐶1 as

the objects 𝐴0, but not quite, since a p-monoidal::::::::::
category needs to have a neutral element

𝑒. But there is a notion of p-monoidal
::::::::::

category without unit that comprises 2-categories as

a special case.

Example 6.5. Below we give two examples of p-monoidal
::::::::::

categories:

• We fix a countably infinite set N . The category n𝔽
::

of finite subsets of N with +○
the partially defined union of disjoint sets is a symmetric p-monoidal

::::::::::
category.

Note that by the union of disjoint sets, we do not mean the disjoint/tagged
union of sets. We simply mean that +○ a partial set union operation on only

those sets which are disjoint; e.g. {1, 2} +○ {2, 3} is undefined, since the intersec-
tion {1, 2} ∩ {2, 3} is not empty. On the other hand, we have

{1, 2} +○ {3, 4} = {1, 2} ∪ {3, 4} = {1, 2, 3, 4}

37

We denote by n𝔹
::

the subcategory of bijections.

• Another example is the notion of heaplets1in separation logics. A heaplet is
a partial function 𝜂 ∶ 𝑋 ⇀ 𝐻 from the address space to data, representing a

computer heap. The composition of heaplets is partial operation, defined as

𝜂1 +○ 𝜂2 = 𝜂1 ∪ 𝜂2, whenever dom 𝜂1 ∩ dom 𝜂2 = ∅.
We can then define a subheap relation 𝜂 ≼ 𝛾, defined if and only if there exists
a heaplet 𝑥, s.t. 𝜂 +○ 𝑥 = 𝛾 (𝜂 +○ 𝑥 must of course be defined). Heaplets together
with ≼ form a p-monoidal

::::::::::
category.

Remark 6.6. [Equivalence of n𝔽
::

and 𝔽
:
]

𝔽
:
is a category with natural numbers as objects together with all bijective functions

between 𝑛, 𝑚 for every object 𝑛, 𝑚, where 𝑛 = {0, … , 𝑛 − 1}.

The category n𝔽
::

is equivalent as a category to the the skeleton category 𝔽
:
. However,

they are not equivalent as partially monoidal categories.

Indeed, n𝔽
::
is commutative, but 𝔽

:
is not. Even though 𝑛 +𝑚 equals𝑚+𝑛, the symmetry

𝑛 + 𝑚 → 𝑚 + 𝑛 is not the identity. This is another sense in which the p-monoidal
::::::::::

category n𝔽
::

is easier to work with than the monoidal category 𝔽
:
.

We will see variations on ex. 6.5 in the next section. Semantically, we will have the opportu-

nity to replace sets by words or multisets. Syntactically, we will represent n𝔹
::

and n𝔽
::

by a

string diagrammatic calculus.

In our examples, themonoid operation is the partial union of disjoint sets. There are various

ways in which one can turn this operation into a total operation, but that would introduce

technicalities that would take us further away from the aim of this paper: Syntactic repre-

sentations of n𝔹
::

and n𝔽
::

up to isomorphism that correspond closely to how we work with

simultaneous substitutions in an informal way. As emphasised above, we are interested in

a mechanism that reflects directly that [𝑎↦𝑏, 𝑎↦𝑐] is not a valid simultaneous substitution.

6.2 Syntax and Semantics

The syntax we will develop in this section is that of nominal string diagrams, such as the

following one:

1See the slides Introduction to Separation Logic at: https://staffwww.dcs.shef.ac.uk/people/G.Struth/
mgs18/sl-lec1.pdf

38

https://staffwww.dcs.shef.ac.uk/people/G.Struth/mgs18/sl-lec1.pdf
https://staffwww.dcs.shef.ac.uk/people/G.Struth/mgs18/sl-lec1.pdf

b
c

a
b
c
d d

e
b

f

(6.2)

with wires labelled from an infinite, countable alphabet N, the elements of which are written
𝑎, 𝑏, 𝑐 etc. The semantics we are interested in is that of functions between finite sets. For
example, the diagram above will correspond to the function

{𝑎, 𝑏, 𝑐, 𝑑} → {𝑏, 𝑑, 𝑒, 𝑓}

𝑎, 𝑑 ↦ 𝑑 𝑏 ↦ 𝑏 𝑐 ↦ 𝑒

There are three different ways to formalise this.

First, we can treat wires as ordered and labelled with elements ofN . Sequential composition
respects the order of the wires. Parallel composition is partial because distinct wires should

be labelled with distinct names. For example, [𝑎↦𝑏] +○ [𝑎↦𝑐] is not defined.

Second, we can treat wires as ordered and number them explicitly. The label of a wire is

then an occurrence of 𝑎, that is, a pair (𝑖, 𝑎) where 𝑖 is a number and 𝑎 a name. Parallel
composition can then be total and distinct wires will still have distinct labels as multiple

occurrences of the same name are now distinguished by different indices 𝑖. But we need
to be careful because we can now build diagrams such as [𝑎↦𝑏, 𝑎↦𝑐] that do not denote
functions between subsets of N .

Third, we can treat wires as unordered. Instead of thinking of ordered wires lined up in a

linear fashion top to bottom, we now picture them as coming out of plane with no particular

order between them. Sequential composition is still uniquely defined as each wire carries

a unique label. Another way to look at it is that the rewrite rules of diagrams need to be

understood modulo exchange of wires. Accordingly, proofs are one step further away from

what would be implemented in a proof assistant but easier for human consumption and

closer to geometric intuition.

Each of the three approaches can be understood as dealing in different ways with the sim-

ple fact that a set is a list modulo exchange and contraction2. In the first and third approach,

contraction is built into the data structure by restricting our categories to irredundant
::::::::::

di-

agrams. By irredundant
::::::::::

diagrams, we mean that the inputs/outputs contain no duplicate

names. Consequently, parallel composition must be partial. Moreover, in the third ap-

proach, exchange is also built in. In the second approach, parallel composition is total and

it is possible to build diagrams that are not irredundant
::::::::::

and do not correspond to func-

tions between sets of names. We show that the first and second approach generate the

2removing duplicates

39

same equivalence relation on repetition-free diagrams. Alternatively, one could investigate

adding explicit equations for contractions, which we do not do.

In the following we will discuss these three approaches in turn. We start with some nota-

tional preliminaries.

A word of length 𝑛 is a function ⃗𝑋 ∶ 𝑛 → N , that is, an element of N 𝑛 . We may also write a

word ⃗𝑋 as (𝑥0, … 𝑥𝑛−1). If we want to emphasise that the range of a word is a set 𝑋 of names,
we write a word as ⃗𝑋 ∶ 𝑛 → 𝑋, or also as ⃗𝑋 ∶ ‖ ⃗𝑋‖ → 𝑋, where 𝑛 = ‖ ⃗𝑋‖ denotes the length
of the word ⃗𝑋 .

Since we are interested in string diagrams representing functions between sets, we some-

times want to restrict attention to words that do not have multiple occurrences of any let-

ter. We call these words irredundant
::::::::::

and, as mentioned earlier, call a diagram irredundant
::::::::::

when distinct input/output wires are labelled with distinct names. For example, diagram

6.2 is irredundant
::::::::::

.

Definition 6.7. A word ⃗𝑋 ∶ ‖ ⃗𝑋‖ → 𝑋 is called irredundant
::::::::::

if ⃗𝑋 is a bijection.

Writing | − | for the cardinality of a set, if ⃗𝑋 is irredundant
::::::::::

then ‖ ⃗𝑋‖ = |𝑋| and we also write
⃗𝑋 ∶ |𝑋| → 𝑋 .

6.2.1 Ordered sets of wires

Semantically, we consider the category of ordered sets in this section; that is, ordered sub-

sets of names. More formally, we define the category of ordered sets as follows.

Definition 6.8. The category of (finite) ordered sets sw𝔽
:::

is defined as the category that

has irredundant
::::::::::

words over the alphabet N as objects and has as arrows (𝑓, 𝑔) ∶ ⃗𝑋 → �⃗�
commutative squares

|𝑋| |𝑌|

𝑋 𝑌

𝑓

⃗𝑋 �⃗�

𝑔

We denote by sw𝔹
:::

the subcategory where all 𝑔 (hence 𝑓) are bijective3.

While we are interested in the meaning of a diagram as a function between subsets of N,
we start by interpreting them as arrows between words. The reason is that in a diagram the

3Since all functions in the commutative square making up an arrow (𝑓, 𝑔) are bijective, the functions 𝑓 and
𝑔 determine each other.

40

order of wires matters.

Syntactically, diagrams are arrows in a syntactic category where objects are irredundant
::::::::::

words and arrows are built up from the basic diagrams and sequential and parallel compo-

sition:

Definition 6.9. We write swF
:::

for the partially monoidal category that has irredundant
::::::::::

words as objects and arrows freely generated from instances of

a

b

b

a

a b a

b

b a

𝜎 𝛿 𝜇 𝜂

which can be stacked vertically or connected horizontally4. The partially monoidal

category swB
:::

is the subcategory freely generated from instances of 𝜎 and 𝛿 only.

We now define the interperetation [[−]] of the syntactic objects of swF
:::

/swB
:::

in sw𝔽
:::

/sw𝔹
:::

:

Definition 6.10. The basic diagrams

𝜎 (twist), 𝛿 (renaming), 𝜇 (substitution) and 𝜂 (lollipop)

are parameterised by distinct 𝑎, 𝑏 ∈ N and have the following interpretation as arrows
N 𝑛 → N𝑚

s
a

b

b

a

{
=

2 2

{𝑎, 𝑏} {𝑎, 𝑏}

0 ↦ 1
1 ↦ 0

0 ↦ 𝑎
1 ↦ 𝑏

0 ↦ 𝑏
1 ↦ 𝑎

𝑖𝑑

s
a b

{
=

1 1

{𝑎} {𝑏}

𝑖𝑑

0 ↦ 𝑎 0 ↦ 𝑏

𝑎 ↦ 𝑏

s
a

b

b
{

=

2 1

{𝑎, 𝑏} {𝑏}

0 ↦ 0
1 ↦ 0

0 ↦ 𝑎
1 ↦ 𝑏 0 ↦ 𝑏

𝑎 ↦ 𝑏
𝑏 ↦ 𝑏

s
a

{
=

∅ 1

∅ {𝑎}

∅

∅ 0 ↦ 𝑎

∅

Next, we generate a partially monoidal category from the above basic diagrams and sequen-

tial and parallel composition. Sequential composition of diagrams is given by sequential

composition of functions:

4Provided the interfaces of the two diagrams match.

41

𝑚 𝑛

𝑋 𝑌

𝑓

𝑖 𝑗

𝑤

;
𝑛 𝑜

𝑌 𝑍

𝑔

𝑗 𝑘

𝑣

=
𝑚 𝑛 𝑜

𝑋 𝑌 𝑍

𝑓

𝑖 𝑗

𝑤

𝑔

𝑘

𝑣

The notation above implies that the wires that are composed, denoted 𝑗, agree in number,
order and labelling.

Parallel composition is partial, as it is only defined when 𝑋 ∩ 𝑊 = 𝑌 ∩ 𝑉 = ∅:

𝑚 𝑛

𝑋 𝑌

𝑓

𝑖 𝑗

𝑤

+○
𝑜 𝑝

𝑊 𝑉

𝑔

𝑘 𝑙

𝑣

=
𝑚 + 𝑜 𝑛 + 𝑝

𝑋 ⊎ 𝑊 𝑌 ⊎ 𝑉

𝑓 +○ 𝑔

𝑖 +○ 𝑘 𝑗 +○ 𝑙

𝑤 ⊎ 𝑣

where ⊎ = ∪, due to the partiality constraint, and +○ is defined as:

𝑓 +○ 𝑔 ∶ 𝑚 + 𝑜 → 𝑛 + 𝑝,

𝑓 +○ 𝑔(𝑗) = {
𝑓(𝑗) for 0 ≤ 𝑗 < 𝑚

𝑔(𝑗 − 𝑚) + 𝑝 for 𝑚 ≤ 𝑗 < 𝑚 + 𝑜
and

𝑖 +○ 𝑘 ∶ 𝑚 + 𝑜 → 𝑋 ⊎ 𝑊,

𝑖 +○ 𝑘(𝑗) = {
𝑖(𝑗) for 0 ≤ 𝑗 < 𝑚

𝑘(𝑗 − 𝑚) for 𝑚 ≤ 𝑗 < 𝑚 + 𝑜

Finally, recall that n𝔽
::

and n𝔹
::

denote the partially monoidal categories of (finite) functions

and bijections, respectively. We now have

swF
:::

[[−]]
⟶ sw𝔽

:::

|−|
⟶ n𝔽

::

and
swB
:::

[[−]]
⟶ sw𝔹

:::

|−|
⟶ n𝔹

::

where the forgetful functor | − | maps an arrow (𝑓, 𝑔) of words to the function 𝑔, such that
the following holds.

Proposition 6.11. The semantics extends to partially monoidal functors |[[−]]| ∶ swB
:::

→
n𝔹
::

and |[[−]]| ∶ swF
:::

→ n𝔽
::
. In particular, if (𝑓, 𝑔) = [[𝜙 ∶ 𝑤 → 𝑣]], then 𝑔 is a function

from the set of letters of 𝑤 to the set of letters of 𝑣. Moreover, if 𝜙 is in swB
:::

then 𝑔 is a
bijection.

In sec. 6.3 we are going to axiomatise the theory of bijections that describes which diagrams

are identified by |[[−]]| ∶ swB
:::

→ n𝔹
::

and in sec. 6.4 the theory of functions that describes

42

which diagrams are identified by |[[−]]| ∶ swF
:::

→ n𝔽
::
.

6.2.2 Ordered multisets of wires

The aim of this section is to investigate what happens if we make parallel composition total.

One reason for doing this is that we will prove that even though the resulting rewriting

system may take detours via meaningless diagrams, it is the case that every rewrite in the

‘total system’ between two irredundant
::::::::::

words corresponds to some rewrite in the ‘partial

system’.

For example, in this section we will allow the composition [𝑎↦𝑏] +○ [𝑎↦𝑐] = [𝑎↦𝑏, 𝑎↦𝑐].
Semantically, we make this correspond to a function {(0, 𝑎) ↦ (0, 𝑏), (1, 𝑎) ↦ (1, 𝑐)} not
between sets but occurrences of names. Accordingly, in the semantics, we will use words

of pairs ((0, 𝑥0), … (𝑛 − 1, 𝑥𝑛−1)) instead of words (𝑥0, … 𝑥𝑛−1).

Technically, going to a total parallel composition corresponds to going from ordered sets

of names to ordered sets of occurrences of names, or from ordered sets to ordered mul-

tisets (ordered multisets are pomsets [48] where the order happens to be linear), or from

irredundant
::::::::::

words to words.

Definition 6.12. The category of words with functions w𝔽
::

is defined as the category of

words over the alphabet N with an arrow (𝑓, 𝑔) ∶ ⃗𝑋 → �⃗� being a commutative square,

‖ ⃗𝑋‖ ‖�⃗�‖

𝑋 𝑌

𝑓

⃗𝑋 �⃗�

𝑔

modulo an equivalence relation on arrows (𝑓, 𝑔) ≃ (𝑓′, 𝑔′) if 𝑓 = 𝑓′. We denote by w𝔹
::

the subcategory of arrows (𝑓, 𝑔) where 𝑓 is bijective.

The equivalence relation on arrows is justified by the observation that, on the image of ⃗𝑋 ,
the arrow 𝑔 is determined by 𝑓 . (The reason we are only interested in the image of ⃗𝑋 is that
this image determines the word uniquely.)

43

s
a

b

b

a

{
=

2 2

2 × {𝑎, 𝑏} 2 × {𝑎, 𝑏}

0 ↦ 1
1 ↦ 0

0 ↦ (0, 𝑎)
1 ↦ (1, 𝑏)

0 ↦ (0, 𝑏)
1 ↦ (1, 𝑎)

(0, 𝑎) ↦ (1, 𝑎)
(1, 𝑏) ↦ (0, 𝑏)

s
a b

{
=

1 1

1 × {𝑎} 1 × {𝑏}

𝑖𝑑

0 ↦ (0, 𝑎) 0 ↦ (0, 𝑏)

(0, 𝑎) ↦ (0, 𝑏)

s
a

b

b
{

=

2 1

2 × {𝑎, 𝑏} 1 × {𝑏}

0 ↦ 0
1 ↦ 0

0 ↦ (0, 𝑎)
1 ↦ (1, 𝑏) 0 ↦ (0, 𝑏)

(0, 𝑎) ↦ (0, 𝑏)
(1, 𝑏) ↦ (0, 𝑏)

s
a

{
=

∅ 1

∅ 1 × {𝑎}

∅

∅ 0 ↦ (0, 𝑎)

∅

Next, we generate a partially monoidal category from the above basic diagrams by closing

under sequential and parallel composition. Sequential composition of diagrams is given by

sequential composition of functions:

𝑚 𝑛

𝑚 × 𝑋 𝑛 × 𝑌

𝑓

𝑖 𝑗

𝑤

;
𝑛 𝑜

𝑛 × 𝑌 𝑜 × 𝑍

𝑔

𝑗 𝑘

𝑣

=
𝑚 𝑛 𝑜

𝑚 × 𝑋 𝑛 × 𝑌 𝑜 × 𝑍

𝑓

𝑖 𝑗

𝑤

𝑔

𝑘

𝑣

The parallel composition is now total:

𝑚 𝑛

𝑚 × 𝑋 𝑛 × 𝑌

𝑓

𝑖 𝑗

𝑤

+○
𝑜 𝑝

𝑜 × 𝑊 𝑝 × 𝑉

𝑔

𝑘 𝑙

𝑣

=

𝑚 + 𝑜 𝑛 + 𝑝

(𝑚 + 𝑜) × (𝑋 ∪ 𝑊) (𝑛 + 𝑝) × (𝑌 ∪ 𝑉)

𝑓 +○ 𝑔

𝑖 +○ 𝑘 𝑗 +○ 𝑙

Definition 6.13. We write wF
::

for the monoidal category that has words as objects and

has arrows that are freely generated from instances of 𝜎, 𝛿, 𝜇, 𝜂. wB
::

is the monoidal

subcategory generated from 𝜎 and 𝛿 only.

Proposition 6.14. The semantics extends to monoidal functors [[−]] ∶ wB
::

→ w𝔹
::

and

[[−]] ∶ wF
::

→ w𝔽
::
.

The next proposition says that if a diagram in wF
::

is irredundant
::::::::::

, then it induces, and is

determined by, a unique function between sets of names (denoted 𝑔′ in the proposition).

Proposition 6.15. Let 𝜙 ∶ ⃗𝑋 → �⃗� be a diagram in wF
::

and (𝑓, 𝑔) = [[𝜙]]. If ⃗𝑋 and �⃗� are

irredundant
::::::::::

, then 𝑔 ∶ ‖ ⃗𝑋‖ × 𝑋 → ‖�⃗�‖ × 𝑌 is of the form 𝑔 = 𝑓 × 𝑔′ for a unique function
𝑔′ ∶ 𝑋 → 𝑌 .

Proof. This follows since irredundant
::::::::::

ness means that ⃗𝑋 and �⃗� are bijections. In detail,
we have

44

|𝑋| |𝑌|

|𝑋| × 𝑋 |𝑌| × 𝑌

𝑓

⟨id, ⃗𝑋⟩ ⟨id, �⃗�⟩

𝑔

and define 𝑔′ = �⃗� ⚬ 𝑓 ⚬ ⃗𝑋−1.

The equation (𝑓 × 𝑔′) ⚬ ⟨id, ⃗𝑋⟩ = ⟨id, �⃗�⟩ ⚬ 𝑓 follows immediately as well as that any 𝑔′

satisfying this equation is uniquely determined.

6.2.3 Sets of wires

In this section, we change the notion of sequential composition so that it ignores the or-

dering of the wires. This is possible because, as in sec. 6.2.1, every wire will carry a unique

label. Thus, the domain and codomain of a diagram 𝜙 ∶ 𝑋 → 𝑌 are sets of wires.

In secs. 6.2.1, 6.2.2, even though the generator

𝜎 =
a

b

b

a

defines the identity function {𝑎, 𝑏} → {𝑎, 𝑏}, we could not add the equation 𝜎 = id as
sequential composition had to respect the order of the wires and the labels. With the new

sequential composition we could add this equation, but it seems easier to just drop 𝜎 from
the generators and to take the domain and codomain of a diagram to be sets of labels rather

than words. The semantics of 𝛿 (renaming), 𝜇 (substitution), and 𝜂 (lollipop) can then be
given directly in terms of functions.s

a b
{

= {𝑎} {𝑏}
𝑎 ↦ 𝑏

s
a

b

b
{

= {𝑎, 𝑏} {𝑏}
𝑎 ↦ 𝑏
𝑏 ↦ 𝑏s

a
{

= ∅ {𝑎}∅

Sequential composition of diagrams is described as above by linking wires with the same

label. Parallel composition is stacking diagrams on top of each other and is partial as it has

to respect the irredundant
::::::::::

ness constraints.

Definition 6.16. We write nF
::

for the partially monoidal category freely generated from

𝛿, 𝜇, 𝜂 and parallel and modified sequential composition as described above. We write
nB
::

for the partially monoidal category freely generated from 𝛿 only.

45

Proposition 6.17. The semantics extends to partially monoidal functors [[−]] ∶ nB
::

→ n𝔹
::

and [[−]] ∶ nF
::

→ n𝔽
::
.

6.3 The Theory of Bijective Functions

In this section we will consider the category n𝔹
::

of bijections of finite subsets of some set N ,
with the generator 𝛿𝑎𝑏 ∶ {𝑎}

1 → {𝑏}1 representing a bijection {𝑎} ↣↠ {𝑏} and 𝜎𝑎𝑏 ∶ {𝑎, 𝑏}
2 →

{𝑎, 𝑏}2 representing the identity function 𝑖𝑑{𝑎,𝑏} ∶ {𝑎, 𝑏} → {𝑎, 𝑏}.

Note. We write {𝑎, 𝑏}2 to mean a function 2 → {𝑎, 𝑏}.

Following Lafont [49], we introduce a notion of a canonical form for string diagrams formed

from the generators 𝜎 and 𝛿, defined in the previous section. We first inductively define the
notion of stairs:

··
·

··
· ··

·

··
·

: : = |

Next we define the canonical form:

··
·

··
·

··
···

·

··
·

··
·

··
···

·

| |: : =

In both instances, we omit the names/labels on the wires for better readability.

Lemma 6.18. Any bijective function 𝑓 ∶ 𝑋 ↣↠ 𝑌 together with an ordering on 𝑋 and 𝑌
(given by ⃗𝑋 ∶ |𝑋| ↣↠ 𝑋 and �⃗� ∶ |𝑌| ↣↠ 𝑌) is represented by a unique canonical form5.

Proof. By induction on the size 𝑛 of 𝑋 and 𝑌 :

• If 𝑛 = 0, then 𝑓 is the identity function on the empty set and is represented by
the empty string diagram.

• If 𝑛 ≥ 1, then given ⃗𝑋 and �⃗� , we have 𝑥1 = ⃗𝑋(1) and 𝑦𝑛 = 𝑓(𝑥1) (where 𝑛 =
�⃗�−1(𝑓(𝑥1))). Now, we have two cases, either 𝑥1 = 𝑦𝑛 , in which case we will have
the diagram:

5The canonical diagrams are unique in the graphical 2D syntax and unique up to axioms of a monoidal
category when represented in the one dimensional syntax.

46

··
·

··
·

··
···

·

x1

x1

y1

yn-1
x2

yn+1

where the remaining part (in magenta) is given by the IH, by removing 𝑥1 and
𝑦𝑛 from 𝑓 , ⃗𝑋 and �⃗� and re-numbering the order functions.

In case 𝑥1 ≠ 𝑦𝑛 , we get the following diagram (with the IH giving the remaining

part, as in the previous case):x1 y1
x2

··
·

··
·

··
···

·

y1

yn+1
yn
yn-1

x1
x2

Before we show that the rewriting system of fig. 6.1 is terminating and rewrites to the canon-

ical form, we have to take care of the fact that due to the partiality of +○ not all diagrams

can be decomposed in the usual fashion. Consider the example below:b1

a dc

b ec (6.3)

Here, the vertical slicing of the diagram in the middle is not allowed, because the two sub-

diagrams would violate the irredundant
::::::::::

ness constraint, since two 𝑐’s would appear in the
codomain and domain of the left and right sub-diagram, respectively. In order to avoid such

conflicts, we define a notion of restricted substitution, wherein we replace repeated names

with fresh ones, such that the new diagram can be sliced arbitrarily without restriction. For

example, the substitution renames both 𝑐’s into fresh variables:b1

#3 d#1

#4 e#2

As we will show, the rewriting system in fig. 6.1 axiomatises the theory of bijections. Notice

that we elided the labels in some of the equations, which then need to be instantiated by

appropriately labelling the wires as shown in sec. 6.2.1.

a cb a c

a ab a

aa

Figure 6.1: Rewrite rules of swB
::

47

Lemma 6.19. Any diagram 𝜙 ∶ ⃗𝑋 → �⃗� in which all internal names are fresh reduces to
a canonical form 𝜙 by the rules of fig. 6.1.

Proof. We prove this lemma by double induction on the number 𝑝 of input/output
ports (𝑝 = | ⃗𝑋| = |�⃗�|) together with the size 𝑠 of 𝜙, defined as the number of generators
which make up the diagram.

• If 𝑠 = 0, then 𝜙 = 𝑖𝑑 ⃗𝑋 = 𝑖𝑑�⃗� , which is a canonical form.

• If 𝑠 ≥ 1 then we would like to separate the diagram into an elementary diagram

𝜀 and a diagram 𝜓 of size 𝑠 − 1, s.t. 𝜙 = 𝜓 ; 𝜀. However, we need to be careful
as this might not always be possible.

– If 𝜀 = 𝜎, the proof mirrors Lafont’s in the usual way. There are 4 cases (the
case for the canonical form with and without the diamond are exactly the

same in these 4 cases and we highlight 𝜀 in cyan):

In the first case, we apply the first rule and then apply the IH to a sub-

diagram with 𝑝 − 1 ports (outlined in magenta).

··
·

··
···

·

··
·

··
·

··
·

··
·

··
···

·

··
·

··
·

··
·

··
·

··
···

·

··
·

··
·

··
·

In the second case, we apply the second rule and obtain a diagram in

canonical form. In the third case, we use the IH for 𝑝 − 1 again.

··
·

··
·

··
·

··
·

··
·

··
·

··
·

··
·

··
·

··
·

··
·

··
·

··
·

··
·

··
·

··
·

The last case is a canonical form already.

48

··
·

··
·

··
·

··
·

– If 𝜀 = 𝛿, things are a bit more tricky as we cannot always decompose the
diagram in the desired way.

Consider the following case:

a

ba

ψ
i

j

(6.4)

The diagram above is problematic, as we we cannot split it along the

dashed line, since the smaller diagram 𝜓 will no longer be irredundant
::::::::::

.

In order to proceed, we use the notion of restricted substitution described

earlier, replacing one specific occurrence of a label with a fresh name,

starting from the output port going backwards. There will be two cases:

In the first case, the operation traces the label 𝑎 backwards, replacing it
with a fresh label 𝑎#, until it reaches a diamond:

aa bb #a
#a

In the other case, the label is traced all the way back to the input port, in

which case we get the following diagram:

a

a

a #a

#a

Applying this operation to the problematic diagram we obtain two cases:

49

a

ba

ψ
i

j

a

b

i
ψ[a]j

#a ja
#a

a

b

i
ψ[a]j

#a

This now allows us to separate the original diagram 𝜙 into 𝜓[𝑎𝑗] ; (⃗𝑖𝑑 +○
𝛿𝑎#𝑏 +○ ⃗𝑖𝑑) or (⃗𝑖𝑑 +○ 𝛿𝑎𝑗𝑎# +○

⃗𝑖𝑑) ; 𝜓[𝑎𝑗] ; (⃗𝑖𝑑 +○ 𝛿𝑎#𝑏 +○ ⃗𝑖𝑑).

Since, by definition, 𝑎# is a fresh variable not appearing anywhere in the
diagram, this decomposition is defined and since 𝑠𝑖𝑧𝑒(𝜓[𝑎𝑗]) = 𝑠𝑖𝑧𝑒(𝜓) =
𝑠 − 1, we can apply the IH to 𝜓[𝑎𝑗] and obtain 𝜓[𝑎𝑗], which is in canonical
form.

We analyze the following three cases of the sub-diagram 𝜓[𝑎𝑗] ; (⃗𝑖𝑑 +○
𝛿𝑎#𝑏 +○ ⃗𝑖𝑑), ignoring the second case of the substitution above (for now).

For the first case, we simply slide the diamond past the twist (4th rule)

and apply IH to a sub-diagram with 𝑝 − 1 ports (likewise for the second
case):

··
·

··
···

·

··
·

··
·

··
···

·

··
·

··
·

··
···

·

··
·

50

··
·

··
·

··
·

··
·

The last case involves multiple application of the last rule, sliding the

diamond past all the twists of the stairs (this derived rule is easily proven

by induction on the height of the stairs). Here, we have two further cases.

Either the normal form has a diamond at the bottom most port, in which

case we apply rule 3 and obtain a diagram in canonical form, otherwise,

the last port is an identity and we already have a canonical form.

··
·

··
·

··
· ··

·

··
·

··
· ··

·

*

Finally, we get back to the other case of the diagram substitution, namely:

a

b

i
ψ[a]

#a

j

ja
#a

We apply the same reasoning as for the first substitution case and obtain

the following diagram (which is almost in canonical form):

··
·

··
·

··
·

#a ja

In order to show that the diagram above is/can be turned into canonical

form, we will modify the definition of canonical form slightly. One can

easily see that the following definition of canonical form is equivalent to

the one introduced earlier:

51

: : =

| |: : =

: : = |

Thus, the previous diagram can be rewritten as:

#a ja

Which, according to the definition above is the same as:

or

For the first case, we apply the 3rd rule and obtain canonical form and in

the second case, we already have canonical form.

Recall from sec. 6.2.1 that the partially monoidal category swB
:::

is ‘free over twist and diamond’

and that there is a p-monoidal
::::::::::

functor

[[−]] ∶ swB
:::

→ sw𝔹
:::

into the category of irredundant
::::::::::

words with bijections. We have shown that the kernel of

this functor is axiomatised by the equations of fig. 6.1:

Theorem 6.20. The partially monoidal category swB
:::

modulo the equations from fig. 6.1

is isomorphic to the partially monoidal category sw𝔹
:::

of irredundant
::::::::::

words with bijec-

tions.

Proof. A quick inspection verifies that the left and right-hand side of all rewrites in

fig. 6.1 are mapped to the same bijection between irredundant
::::::::::

words in sw𝔹
:::

. This

shows the soundness of the equations. For completeness, we need to show that if two

diagrams 𝜙, 𝜓 are identified by [[−]], then they can be proved equal using the equations.

52

By lem. 6.18, we know that [[𝜙]] = [[𝜓]] has a unique canonical form and by lem. 6.19 we

know that both 𝜙 and 𝜓 rewrite to this canonical form. Hence 𝜙 and 𝜓 are equal

according to the equations.

The next theorem shows that when using equational reasoning, we can work with a total

parallel composition. While not all diagrams showing up in such a proof correspond to

functions between sets of names, they do so if their domain and codomain are irredundant
::::::::::

words.

Recall [[−]] ∶ wB
::

→ w𝔹
::

from prop. 6.14.

Theorem 6.21. Let 𝜙, 𝜓 be two irredundant
::::::::::

diagrams in wB
::

such that 𝜙 = 𝜓 in the

equational theory of wB
::

plus the equations of fig. 6.1. Then 𝜙 = 𝜓 in the equational

theory of swB
:::

plus the equations of fig. 6.1.

Proof. There are more equations in wB
::

than in swB
:::

because the interchange law in

swB
:::

is restricted by the partiality of parallel composition, see eq. 6.3. Nevertheless, if

𝜙 = 𝜓 in the equational theory of wB
::

then [[𝜙]] = [[𝜓]] in w𝔹
::

because the equations of

fig. 6.1 are sound wrt to [[−]] ∶ wB
::

→ w𝔹
::
. But since 𝜙 and 𝜓 are irredundant

::::::::::
, [[𝜙]] = [[𝜓]]

in w𝔹
::

implies [[𝜙]] = [[𝜓]] in sw𝔹
:::

. Now the result follows from the completeness part of

thm. 6.20.

Next, we come to the question of representing the category of n𝔹
::

up to isomorphism. In-

tuitively, the presentation swB
:::

plus the equations of fig. 6.1 present n𝔹
::

up to isomorphism

once we add equations between objects identifying all words that only differ in the order

of their letters. This can be made precise by adapting the notion of presentation modulo

of Curien and Mimram [50] to partially monoidal categories:

The category presented by swB
:::

plus the equations of fig. 6.1 plus equational generators

[50](Def.7) identifying words that only differ in the order of their letters is isomorphic to the

category n𝔹
::

of finite sets of names.

If we are willing to work with sets of wires instead of words of wires we obtain the following.

Recall prop. 6.17.

Theorem 6.22. The partially monoidal category nB
::

modulo equations

a cb a c= a ab a=

is isomorphic to the partially monoidal category n𝔹
::

of finite sets of names with bijec-

tions.

53

Why are the equations of thm. 6.22 so much simpler than the equations of fig. 6.1? Geomet-

rically, if wires are sets, then wires do not line up in one dimension but can be pictured as

coming out of a 2-dimensional plane as in fig. 3.1 of [13]. Similarly to how the geometry of

planar string diagrams trivialises the laws of monoidal categories, going from ordered wires

to sets of wires trivialises the equations of fig. 6.1 that involve twisting of wires.

6.4 The Theory of Functions

We extend the results from the previous section from bijections to functions. In other words,

going back to def. 6.9, we extend swB
:::

with the generators 𝜇 and 𝜂, see def. 6.10.

Again, we define a canonical form for these diagrams:

: : =
··

·

··
·

··
···

·

··
·

··
·

··
···

·

||: : =

| |: : = |

The rules of this rewrite system are given in fig. 6.2.

a cb a c

a ab a

aa

a
b b a b

a

b b b

a
b
c

b
a
b
c

bc
bc a

b a a
b

b a

a
b c c ca

b
b a

b b
c a

b b

a a
c c

Figure 6.2: Rewrite rules of swF
::

Lemma 6.23. Any function 𝑓 ∶ ⃗𝑋 → �⃗� is represented by a unique canonical form in

swF
:::

.

Proof. We begin with the observation that any function 𝑔 ∶ 𝑋 → 𝑌 can be factored
as a surjection, followed by an injection in a straightforward way. Thus we can do the

54

following factorization for our function 𝑓 :

|𝑋| |𝑋′| |𝑌|

𝑋 𝑋′ 𝑌

⃗𝑋 ⃗𝑋′ �⃗�

𝑓sur 𝑓inj

𝑓

We will first focus on the left part of the picture, namely the surjection. We define 𝑓sur
in the following way:

𝑓sur (𝑥) = 𝑚𝑎𝑥
⃗𝑋 (2𝑓 ({𝑓(𝑥)}))

where 2𝑓 ∶ 2𝑌 → 2𝑋 is the pre-image of 𝑓 and 𝑚𝑎𝑥 ⃗𝑋 ∶ 2𝑋 → 𝑋 is defined as:

𝑚𝑎𝑥 ⃗𝑋 (𝑍) = ⃗𝑋(𝑚𝑎𝑥(⃗𝑋−1[𝑍]))

(⃗𝑋−1[𝑍] ∶ 2𝑋 → 2|𝑋| is the inverse function of ⃗𝑋 lifted to sets)

Intuitively, 𝑓sur acts as the identity on everything, but the elements, which are identi-
fied in the image of 𝑓 . For those, we take the pre-image of 𝑓 and choose a canoni-
cal/maximal element, which is given to us by the 𝑚𝑎𝑥 ⃗𝑋 function. This function takes

the set of elements that are to be identified and choses the largest one, according to

the given ordering ⃗𝑋 .

Next we need to give the ordering function ⃗𝑋′. Since this must be a bijection, we will
instead give the definition of the inverse function ⃗𝑋′−1:

⃗𝑋′−1(𝑥) = shift (�⃗�−1(𝑓(𝑥)), �⃗�−1(𝑓(𝑥)) + 1)

shift ∶ |𝑌| × |𝑌| → |𝑋|

shift (𝑔, 0) = 𝑔

shift (𝑔, 𝑐) = {
shift (𝑔, 𝑐 − 1) if �⃗� (𝑐 − 1) ∈ 𝑓[𝑋]

shift (𝑔 − 1, 𝑐 − 1) otherwise

The ordering ⃗𝑋′ is defined from the ordering �⃗� , by essentially composing �⃗� with 𝑓 and
then filtering out the elements in the domain of �⃗� , which do not appear in the image
of 𝑓 . It is much easier to see this pictorially: b1

b
c

a
b
c
d d

b
cd

c
b a

55

In the diagrammatic representation of a function 𝑓 above, 𝑓sur is defined as

𝑓sur (𝑎) = 𝑑 𝑓sur (𝑏) = 𝑏 𝑓sur (𝑐) = 𝑐 𝑓sur (𝑑) = 𝑑

and can be read off from the sub-diagram to the left of the dashed line. The ordering
⃗𝑋′ is:

⃗𝑋′(0) = 𝑏 ⃗𝑋′(1) = 𝑐 ⃗𝑋′(2) = 𝑑

and thus

⃗𝑋′−1(𝑏) = 0 ⃗𝑋′−1(𝑐) = 1 ⃗𝑋′−1(𝑑) = 2

We can verify that our definition of ⃗𝑋′−1 above is correct, by checking that ⃗𝑋′−1(𝑑) is
really 2.

⃗𝑋′−1(𝑑) = shift (�⃗�−1(𝑓(𝑑) + 1), �⃗�−1(𝑓(𝑑)))

= shift (�⃗�−1(𝑑), �⃗�−1(𝑑) + 1)

= shift (3, 4)

= shift (3, 3) �⃗�(3) ∈ 𝑓[𝑋] (�⃗�(3) = 𝑑)

= shift (2, 2) �⃗�(2) ∉ 𝑓[𝑋] (�⃗�(2) = 𝑐)

= shift (2, 1) �⃗�(1) ∈ 𝑓[𝑋] (�⃗�(1) = 𝑏)

= shift (2, 0) �⃗�(0) ∈ 𝑓[𝑋] (�⃗�(1) = 𝑎)

= 2

Finally, the right side of the picture, namely the definition of 𝑓inj ∶ 𝑋
′ → 𝑌 is simply:

𝑓inj (𝑥) = 𝑓(𝑥)

We will now match the surjective decomposition of 𝑓 to the left side of the canoni-
cal form form and the injective decomposition will correspond to the right canonical

diagram.

• Surjection: We proceed by induction on the size 𝑛 of 𝑋 :
– If 𝑛 = 0, then 𝑓 is the identity function on the empty set and is represented
by the empty string diagram.

– If 𝑛 ≥ 1, then given ⃗𝑋 and ⃗𝑋′, we have 𝑥1 = ⃗𝑋(1) and 𝑥′𝑛 = 𝑓sur (𝑥1) (where
𝑛 = ⃗𝑋′−1(𝑓sur (𝑥1))). We have two cases. Either 𝑥1 is mapped to 𝑥1 and no
other value is identified with 𝑥1 (i.e. |2

𝑓 ({𝑓(𝑥1)})| = 1), in which case we
will have the diagram:

56

··
·

··
·

··
···

·

x1

x1

x’1
x2

otherwise, we have |2𝑓 ({𝑓(𝑥1)})| > 1 and 𝑥1 is identified with some 𝑥
′
𝑛 , in

which case we have:

··
·

··
·

x1 x’1
x2

x’n

where the rest of the diagram is given by the IH, by re-numbering ⃗𝑋, ⃗𝑋′

and removing 𝑥1 from the domain of 𝑓sur .
• Injection: Again, we proceed by induction, now on the size 𝑛 of 𝑌 :

– If 𝑛 = 0, then 𝑓 is the identity function on the empty set and is represented
by the empty string diagram.

– If 𝑛 ≥ 1, then we have 𝑦1 = �⃗�(1). In case we have 𝑦1 ∉ 𝑓[𝑋], we get the
diagram:

y1

Otherwise we have 2𝑓inj ({𝑦1}) = {𝑥
′
1} where we either have 𝑥

′
1 = 𝑦1, in which

case we get:

y1y1

y1x’1

otherwise:

y1x’1

y1

The rest of the diagram in all three cases is given by the IH, by

re-numbering �⃗� and removing 𝑥′1 from the domain of 𝑓inj .

Lemma 6.24. The rewrite system in fig. 6.2 is terminating.

Proof. In order to prove termination, we will use an argument of polynomial interpre-

tation, similar to the one found in Lafont [49].

For all diagrams 𝜎 ∶ ⃗𝑋 → �⃗� we will define a strictly monotonic map [𝜎] ∶ (𝑁+ ×𝑁+)|𝑋| →
(𝑁+ × 𝑁+)|𝑌| , where 𝑁+ is the set of strictly positive integers and (𝑁+ × 𝑁+)𝑛 comes with

57

a lexicographic product order:

((𝑥11, 𝑥12), … , (𝑥𝑛1, 𝑥𝑛2)) ≤ ((𝑦11, 𝑦12), … , (𝑦𝑛1, 𝑦𝑛2)) whenever

(𝑥11, 𝑥12) ≤ (𝑦11, 𝑦12), … , (𝑥𝑛1, 𝑥𝑛2) ≤ (𝑦𝑛1, 𝑦𝑛2)

where (𝑥1, 𝑥2) ≤ (𝑦1, 𝑦2)
def= 𝑥1 ≤ 𝑦1 ∨ (𝑥1 = 𝑦1 ∧ 𝑥2 ≤ 𝑦2)

We give a pair of interpretation functions for each of the generators:

(x1+y1,x2+2y2)(x1,x2)
(y1,y2) (x1,x2)

(x1+y1,x2+2y2)(x1,x2)
(y1,y2) (x1,x2)

(x1,x2)
(y1,y2) (2x1+y1,2x2+y2)

(x1,x2)
(y1,y2)

(x1,x2) (x1+1,x2+1)

(2x1+y1,2x2+y2)
(x1,x2)

(1,1)

(x1+1,x2+1)

This interpretation is compatible with the parallel and sequential composition, and

it thus suffices to check that all the rewrite rules, when interpreted, strictly decrease

in at least one coordinate. In the example below, this condition is satisfied, since

(𝑥1, 𝑥2) < (𝑥1 + 1, 𝑥2 + 2):

(x1,x2) (1,1)
(x1+1,x2+2) (x1,x2) (x1,x2)

(1,1)

We will omit the rest of the rules. The full proof was formalized and checked using an

SMT solver and is discussed in further detail in sec. 6.5.

Lemma 6.25. The canonical form, defined at the beginning of this section is a normal
form for the rewriting system, presented in fig. 6.2.

Proof. To see why the canonical form is a normal form, we analyze the rules of the

system and argue that the canonical formmust be the normal form because it contains

no redexes.

Looking at the canonical form, we can see that it is split into the a left and a right

canonical form, where the left diagram contains only twists and cups and the right

side only contains diamonds and lollipops. We can thus eliminate all the rules which

have a lollipop/diamond before a cup or a twist, such as

since the diagram on the left of such rule can appear neither in the left nor in the right

canonical diagram.

For rules, such as

58

a cb a c

the left hand sides clearly cannot appear in the left canonical form, and by inspect-

ing the right canonical form, we can see that they also cannot appear there, as the

canonical right diagram can only ever have one generator at any given port/level.

A similar argument can be made for the rest of the rules, which involve analyzing the

left normal form diagram. Take for example

We need to show that the left hand side of the rule could never appear in a canonical

form. Due to the shape of the rule we must necessarily have the following diagram:

It is then easy to see that there is no way to attach the second twist, such that the

resulting diagram is a canonical one, since the only way to attach a twist this diagram

is to use stairs, which will lead to

The other rules follow in a similar fashion.

Lemma 6.26. The rewrite system in fig. 6.2 is locally confluent and reduces to the canon-

ical form.

Proof. To avoid the difficulty of the partiality of the parallel composition, we will use

a similar trick as in lem. 6.19, wherein we substitute multiple occurrences of the same

variable with fresh ones, s.t. we get the following:

59

ψ

b1

bn

ψ#

b1

bi

bn

bi
#

Since the diagram 𝜓# (before the dashed line) only contains one occurrence of each
name, all compositions are defined (informally, this is because any sub-diagram will

have a irredundant
::::::::::

word on both the input and output ports). It now suffices to show

that 𝜓# reduces to normal form, by proving local confluence.

To show local confluence, ∼100 critical pairs have to be checked6. These are omitted
for brevity and can be found on github7.

Having shown that the normal form is indeed the canonical form in lem. 6.25, the

reduced diagram 𝜓# is of the form:b1 b1

bi
#

bi

b1

bn

bi

b1

bn

b1

bn

*

In order to get the final canonical from, we simply need to apply the 3rd or 6th rule

to collapse the two diamonds for all the diamonds introduced by the substitution

operation.

The remainder of this section copies almost verbatim the corresponding part in sec. 6.3.

Recall from sec. 6.2.1 that the partially monoidal category swF
:::

is ‘free over twist, diamond,

cup and lollipop’ and that there is a functor

[[−]] ∶ swF
:::

→ sw𝔽
:::

into the category of irredundant
::::::::::

words with functions. We have shown that the kernel of

this functors is axiomatised by the equations of fig. 6.2:

Theorem 6.27. The partially monoidal category swF
:::

modulo the equations of fig. 6.2 is

isomorphic to the partially monoidal category sw𝔽
:::

of irredundant
::::::::::

words with functions.

Proof. A quick inspection verifies that the left and right-hand side of all rewrites in

fig. 6.2 are mapped to the same function between irredundant
::::::::::

words in sw𝔽
:::

. This

6As discussed in sec. 6.5, we are currently not confident we have found all the critical peaks.
7https://goodlyrottenapple.github.io/string-diagrams-functions/confluence.html

60

https://goodlyrottenapple.github.io/string-diagrams-functions/confluence.html
https://goodlyrottenapple.github.io/string-diagrams-functions/confluence.html

shows the soundness of the equations. For completeness, we need to show that if two

diagrams 𝜙, 𝜓 are identified by [[−]], then they can be proved equal using the equations.
By lem. 6.23, we know that [[𝜙]] = [[𝜓]] has a unique canonical form and by lems. 6.24,

6.26 we know that both 𝜙 and 𝜓 rewrite to this canonical form. Hence 𝜙 and 𝜓 are

equal according to the equations.

Recall [[−]] ∶ wF
::

→ w𝔽
::

from prop. 6.14.

Theorem 6.28. Let 𝜙, 𝜓 be two irredundant
::::::::::

diagrams in wF
::

such that 𝜙 = 𝜓 in the

equational theory of wF
::

plus the equations of fig. 6.2. Then 𝜙 = 𝜓 in the equational

theory of swF
:::

plus the equations of fig. 6.2.

Proof. There are more equations in wF
::

than in swF
:::

because the interchange law in

swF
:::

is restricted by the partiality of parallel composition. Nevertheless, if 𝜙 = 𝜓 in

the equational theory of wF
::

then [[𝜙]] = [[𝜓]] in w𝔽
::

because the equations of fig. 6.2

are sound wrt to [[−]] ∶ wF
::

→ w𝔽
::
. But since 𝜙 and 𝜓 are irredundant

::::::::::
, [[𝜙]] = [[𝜓]] in

w𝔽
::

implies [[𝜙]] = [[𝜓]] in sw𝔽
:::

. Now the result follows from the completeness part of

thm. 6.27.

6.5 Software Tools

The proofs of termination and confluence presented in sec. 6.4 were given in reduced detail

as the specifics are rather technical. In order to alleviate the burden, we developed software

tools which helped building these proofs. These tools are presented briefly below.

6.5.1 Termination Proof

The termination proof in the previous section (lem. 6.24) uses a polynomial interpretation

argument adapted from Lafont’s original proof [49]. Whilst trying to modify the original

proof (by adding the lollipop generator and the associated rules) it quickly became tedious

to check if all 19 rules preserved the order. Moreover, when playing around with different

possible rules, one needs a way to quickly check whether the new rules still terminate or

not. Since the polynomial interpretation involves only simple arithmetic, we decided to

automate the proof checking by delegating this work to an SMT solver.

As a result, we developed a Python script, which encodes the generators and all the rules

as first order logic formulas which are then given to the Z3 SMT solver to be verified.

All the generators are translated into abstract functions; for example,

61

https://github.com/Z3Prover/z3

x
y f2(x,y)

f1(x,y)

becomes

f1 = Function('f1', IntSort(), IntSort(), IntSort())
f1_def = ForAll([x, y], f1(x, y) ׃ك x+y)
f2 = Function('f2', IntSort(), IntSort(), IntSort())
f2_def = ForAll([x, y], f2(x, y) ׃ك x)

The rules and the monotonicity condition(x1,x2) (1,1)
(x1+1,x2+2) (x1,x2) (x1,x2)

(1,1)

x f2(g(),x)
f1(g(),x) x x

g()

are then encoded as

And(
f1(g(),x) >= x,
f2(g(),x) >= g(),
Or(f1(g(),x) > x, f2(g(),x) > g()))

which corresponds to 𝑓1(𝑔(), 𝑥) ≥ 𝑥 ∧ 𝑓2(𝑔(), 𝑥) ≥ 𝑔() ∧ (𝑓1(𝑔(), 𝑥) > 𝑥 ∨ 𝑓2(𝑔(), 𝑥) > 𝑔()), en-
coding the condition that at least one argument is strictly decreasing, and none are increas-

ing. The implementation helped us to experiment with different functions 𝑓1, 𝑓2, 𝑔 and was
instrumental in finding the solution employed in the termination proof.

6.5.2 Confluence Proof

In order to check local confluence of our system, we decided to implement the rewrite

system in Haskell. This allowed us to generate the confluence proofs automatically, by

giving the tool the critical peak diagrams we wanted to check. In future work, we hope

to also generate the critical peaks automatically and provide an argument that we have

checked all the critical peaks for the given system, since, at the moment, we aren’t sure

whether we have indeed listed all the critical peaks.

Both the termination script and the implementation of the rewriting system can be found

on github8.

6.5.3 Related work

Having followed the style of proofs in [49], we have since been alerted to more modern

and scalable approaches to proving termination and confluence of string diagram rewriting,

8https://github.com/goodlyrottenapple/string-diagrams-functions

62

https://github.com/goodlyrottenapple/string-diagrams-functions
https://github.com/goodlyrottenapple/string-diagrams-functions

described in [51, 52] and [53]. As we have found when implementing the confluence proof

checker, using the naive approach of representing string diagrams in their traditional 1-D

syntax does not scale particularly well. This is due to the large number of equivalent dia-

grams arising from the monoidal equations andmakes rewriting diagrams in this form tricky

and computationally expensive. The work referenced above uses a different data structure

for string diagrams, namely open hypergraphs, which allow for much more simplified and

efficient rewriting of diagrams. Several tools taking this or similar approaches have been

developed to work with categories presented by 2-dimensional syntax in a graphical way.

These include Globular [54], Quantomatic [55] and CARTOGRAPHER [56], the last of which is

most closely aligned with our work, as it operates within the setting of symmetric monoidal

categories. An interesting future direction might be to try to extend CARTOGRAPHER to work

with nominal string diagrams.

63

Ut, quasi transactis sæpe omnibu rebu, profundant

Fluminis ingentes fluctus, vestemque cruentent.

Lucretius

7
Nominal string diagrams

A
s mentioned earlier, this chapter is an extended version of [45], which was pre-

sented at CALCO 2019. This paper is joint work with my supervisor Alexander

Kurz.

7.1 Setting the Scene: String Diagrams and Nominal Sets

Whereas the last chapter focused on the presentation of nominal string diagrams via par-

tially monoidal categories, we start this chapter with more background on the algebraic

presentation of string diagrams. First, we review some of the terminology and basic defini-

tions of ordinary string diagrams.

7.1.1 String Diagrams and PROPs

String diagrams are a 2-(or higher)-dimensional notation for monoidal categories [13]. Their

algebraic theory can be formalised by PROP
::::

s as defined by MacLane [47].

A PROP
::::

(products and permutation category) is a symmetric strict monoidal category, with
natural numbers as objects, where the monoidal tensor +○ is addition. Moreover, PROP

::::
s,

along with strict symmetric monoidal functors, that are identities on objects, form the cat-

egory PROP
::::

. A PROP
::::

contains all bijections between numbers as they can be be generated

from the symmetry (twist) 𝜎 ∶ 1 +○ 1 → 1 +○ 1 and from the parallel composition +○ and

64

sequential composition ; (which we write in diagrammatic order). We denote by 𝜎𝑛,𝑚 the

canonical symmetry 𝑛 +○ 𝑚 → 𝑚 +○ 𝑛. Functors between PROP
::::

s preserve bijections.

PROP
::::

s can be presented in algebraic form by operations and equations as symmetric

monoidal theories (SMT
:::

s) [57].

An SMT
:::

(Σ, 𝐸) has a set Σ of generators, where each generator 𝛾 ∈ Σ is given an arity 𝑚
and co-arity 𝑛, usually written as 𝛾 ∶ 𝑚 → 𝑛 and a set 𝐸 of equations, which are pairs of
Σ-terms. Σ-terms can be obtained by composing generators in Σ with the unit id ∶ 1 → 1
and symmetry 𝜎 ∶ 2 → 2, using either the parallel or sequential composition (see fig. 7.1).
Equations 𝐸 are pairs of Σ-terms with the same arity and co-arity.

γ

𝛾 ∶ 𝑚 → 𝑛 ∈ Σ 𝑖𝑑 ∶ 1 → 1 𝜎 ∶ 2 → 2

t’

t’

t

t ;t s st

𝑡 ∶ 𝑚 → 𝑛 𝑡′ ∶ 𝑜 → 𝑝
𝑡 +○ 𝑡′ ∶ 𝑚 + 𝑜 → 𝑛 + 𝑝

𝑡 ∶ 𝑚 → 𝑛 𝑠 ∶ 𝑛 → 𝑜
𝑡 ; 𝑠 ∶ 𝑚 → 𝑜

Figure 7.1: SMT Terms

Given an SMT
:::

⟨Σ, 𝐸⟩, we can freely generate a PROP
::::

, by taking Σ-terms as arrows, modulo the
equations SMT

:::
, which are:

• the equations stating that, together with id, the compositions ; and +○ form monoids

• the equations of fig. 7.2

• the equations 𝐸

𝜎1,1 ; 𝜎1,1 = 𝑖𝑑2 (SMT-sym)

(𝑠 ; 𝑡) +○ (𝑢 ; 𝑣) = (𝑠 +○ 𝑢) ; (𝑡 +○ 𝑣) (SMT-ch)
𝑠 ∶ 𝑚 → 𝑛 𝑡 ∶ 𝑜 → 𝑝

(𝑠 +○ 𝑡) ; 𝜎𝑛,𝑝 = 𝜎𝑚,𝑜 ; (𝑡 +○ 𝑠)
(SMT-nat)

Figure 7.2: Equations of symmetric monoidal categories

PROP
::::

s have a nice 2-dimensional notation, where sequential composition is horizontal

composition of diagrams, and parallel/tensor composition is vertical stacking of diagrams

(see fig. 7.1). We now present the SMT
:::

s of bijections B , injections I , surjections S ,

65

=

==

==

= =

==

= =

==

==

= =

=

= =

=

Figure 7.3: Symmetric monoidal theories (compiled from [49])

functions F , partial functions P , relations R and monotone maps M .1

The diagram in fig. 7.3 shows the generators and the equations that need to be added to

the empty SMT
:::

, to get a presentation of the given theory.

To ease comparison with the corresponding nominal monoidal theories in fig. 7.4, we also

added a striped background to the equations with wire-crossings, since they are already

implied by the naturality of symmetries (SMT-nat). The right-hand equation for bijections B

is (SMT-sym) and holds in all symmetric monoidal theories. We list it here to emphasise the

difference with fig. 7.4.

7.1.2 Nominal Sets

Let N be a countably infinite set of ‘names’ or ‘atoms’. Let be the group of finite2 permu-

tations N → N . An element 𝑥 ∈ 𝑋 of a group action × 𝑋 → 𝑋 is supported by 𝑆 ⊆ N if

𝜋 ⋅ 𝑥 = 𝑥 for all 𝜋 ∈ such that 𝜋 restricted to 𝑆 is the identity. A group action × 𝑋 → 𝑋
where all elements of 𝑋 have finite support is called a nominal set.

We write supp(𝑥) for the minimal support of 𝑥 and Nom
::::

for the category of nominal sets,

which has as maps the equivariant functions, that is, those functions that respect the per-

1The theory of monotone maps M does not include equations involving the symmetry 𝜎 and is in fact
presented by a so-called PRO rather than a PROP

::::
. However, in this paper we will only be dealing with theories

presented by PROP
::::

s (the reason why this is the case is illustrated in the proof of prop. 7.29).
2A permutation is called finite if it is generated by finitely many transpositions.

66

mutation action. We present an example of a sub-category of Nom
::::

; the category of simul-

taneous substitutions:

Example 7.1. [Category n𝔽
::
]

We denote by n𝔽
::

the category of finite subsets of N with all functions. While n𝔽
::

is

a category, it also carries additional nominal structure. In particular, both the set of

objects and the set of arrows are nominal sets with supp(𝐴) = 𝐴 and supp(𝑓) = 𝐴 ∪ 𝐵
for 𝑓 ∶ 𝐴 → 𝐵. The categories of injections n𝕀, surjections n𝕊, bijections n𝔹, partial
functions nℙ and relations nℝ are further examples along the same lines.

7.2 Internal monoidal categories

As stated in the introduction of this thesis, our exploration of string diagrams started out

from the desire to create a calculus of simultaneous substitutions. Our aim was to give a

presentation of the category n𝔽
::

and we realised that string diagrams are an elegeant way

to do just that.

Recall from rem. 6.6 that 𝔽
:
, which is presented by the SMT

:::
of functions F , is the skeleton

category of n𝔽
::
. Whilst in 𝔽

:
, the monoidal tensor +○ is the coproduct

+○∶ 𝔽
:
× 𝔽

:
→ 𝔽

:

we see from the definition of n𝔽
::
in ex. 7.1, that a monoidal product ⊎3, corresponding to the

parallel composition in n𝔽
::
, must be a partial operation

⊎ ∶ n𝔽
::
× n𝔽

::
→ n𝔽

::
.

This is the case, because we want to ensure there is no overlap between the domains and

co-domains of the two functions we compose.

One way to formalise this is to develop a theory of partial monoidal categories, as we have

done in the previous chapter. However, in this situation it seems more elegant to notice

that ⊎ can be viewed as a total operation

⊎ ∶ n𝔽
::

●∗ n𝔽
::

→ n𝔽
::

if we take ●∗ as the “separated product” 𝐴 ●∗ 𝐵 = {(𝑎, 𝑏) ∈ 𝐴 × 𝐵 ∣ supp(𝑎) ∩ supp(𝑏) = ∅},
which internalises the constraint that 𝑓 ⊎ 𝑔 is defined iff the domain and codomain of 𝑓

3We will use the ⊎ symbol for the monoidal tennsor of n𝔽
:
to distingusih it from the monoidal tensor +○ of

𝔽.

67

and 𝑔 are disjoint. Whilst seemingly ad-hoc at first, we only have to look at the definition
of Nom

::::
four our definition of ●∗ :

Example 7.2. Nom
::::

forms a symmetric monoidal (closed) category (Nom
::::

, 1, ∗) of nomi-
nal sets with the separated product ∗ (for details see [24]). 1 is the terminal object, i.e. a
singleton with empty support. The separated product of two nominal sets is defined

as 𝐴 ∗ 𝐵 = {(𝑎, 𝑏) ∈ 𝐴 × 𝐵 ∣ supp(𝑎) ∩ supp(𝑏) = ∅}.

It is immediately obvious that our ●∗ is simply a “lifted” version of ∗ from Nom
::::

.

To make this lifting precise, we introduce the notion of an internal monoidal category. Given

a symmetric monoidal category (V, 𝐼, ×○) with finite limits, such as Nom
::::

in our example, we

are interested in categories ℂ, internal in V 4, that carry a monoidal structure not of type

ℂ × ℂ → ℂ but of type ℂ ●× ℂ → ℂ. Here we will make a distinction between the ×○monoidal

product of the category V
×○∶ V × V → V

and the lifted product-of-internal-categories5

●× ∶ Cat(V) × Cat(V) → Cat(V).

This lifted tensor will then allow us to account for the partiality of ⊎ discussed above, such
that we have:

Example 7.3. The category (n𝔽
::
, ∅, ⊎) is an internal monoidal category (in Nom

::::
), with

monoidal operation given by 𝐴 ⊎ 𝐵 = 𝐴 ∪ 𝐵 if 𝐴, 𝐵 are disjoint and 𝑓 ⊎ 𝑓′ = 𝑓 ∪ 𝑓′ if 𝐴, 𝐴′

and 𝐵, 𝐵′ are disjoint where 𝑓 ∶ 𝐴 → 𝐵 and 𝑓′ ∶ 𝐴′ → 𝐵′.

(n𝔽
::
, ∅, ⊎) as defined in this example is not a monoidal category, since ⊎, is not an

operation of type n𝔽
::
× n𝔽

::
→ n𝔽

::
, but insted n𝔽

::
●∗ n𝔽

::
→ n𝔽

::
.

The purpose of this section is to give a proper definition of the notion of internal monoidal

categories and to show that (n𝔽
::
, ∅, ⊎) is an internal monoidal category in (Nom

::::
, 1, ∗).

From our example n𝔽
::

above, we know that we want arrows (𝑓, 𝑔) to be in (ℂ ●× ℂ)1
6, if

dom(𝑓) ∩ dom(𝑔) = ∅ and cod(𝑓) ∩ cod(𝑔) = ∅. One might be tempted to lift the tensor ×○
from V in the obvious way: (ℂ ●× ℂ)1 = ℂ1 ×○ ℂ1. However, since ×○ need not preserve finite

limits, we cannot expect that defining (ℂ ●× ℂ)0 = ℂ0 ×○ ℂ0 and (ℂ ●× ℂ)1 = ℂ1 ×○ ℂ1 results
in ℂ ●× ℂ being an internal category. To show what goes wrong in a concrete instance, see
the next example.

4For a definition of an internal category, see app. B
5In the type signature of ●× , Cat(V) deonotes the category of small internal categories
6In this case, we have ℂ = n𝔽

:
.

68

Example 7.4. Following on from the previous example, given (Nom
::::

, 1, ∗), we define a
binary operation n𝔽

::
●∗ n𝔽

::
as (n𝔽

::
●∗ n𝔽

::
)0 = n𝔽::0 ∗ n𝔽::0 and (n𝔽::

●∗ n𝔽
::
)1 = n𝔽::1 ∗ n𝔽::1.

Then n𝔽
::

●∗ n𝔽
::

cannot be equipped with the structure of an internal category. Indeed,

assume for a contradiction that there was an appropriate pullback (n𝔽
::

●∗ n𝔽
::
)2 and

arrow comp such that the two diagrams commute:

(n𝔽
::

●∗ n𝔽
::
)2 comp //

𝜋1 𝜋2

��

n𝔽
::1 ∗ n𝔽::1

dom cod

��

n𝔽
::1 ∗ n𝔽::1

dom
cod

// n𝔽
::0 ∗ n𝔽::0

Let 𝛿𝑥𝑦 ∶ {𝑥} → {𝑦} be the unique function in n𝔽
::

of type {𝑥} → {𝑦}. Then

((𝛿𝑎𝑐 , 𝛿𝑏𝑑), (𝛿𝑐𝑏, 𝛿𝑑𝑎)), which can be depicted as

{𝑎}
𝛿𝑎𝑐

// {𝑐}
𝛿𝑐𝑏

// {𝑏}
{𝑏} 𝛿𝑏𝑑

// {𝑑} 𝛿𝑑𝑎
// {𝑎}

is in the pullback (n𝔽
::

●∗ n𝔽
::
)2, but there is no comp such that the two squares above

commute, since comp((𝛿𝑎𝑐 , 𝛿𝑏𝑑), (𝛿𝑐𝑏, 𝛿𝑑𝑎)) would have to be (𝛿𝑎𝑏, 𝛿𝑏𝑎). But since 𝛿𝑎𝑏
and 𝛿𝑏𝑎 do not have disjoint support (since supp(𝛿𝑎𝑏) = supp(𝛿𝑏𝑎) = {𝑎, 𝑏}), this set
cannot be in n𝔽

::1 ∗ n𝔽::1.

The solution to the problem consists in assuming that the given symmetric monoidal cate-

gory with finite limits (V, 1, ×○) is semi-cartesian (aka affine), that is, the unit 1 is the terminal
object. In such a category there are canonical arrows natural in 𝐴 and 𝐵

𝑗 ∶ 𝐴 ×○ 𝐵 → 𝐴 × 𝐵

and we can use them to define arrows 𝑗1 ∶ (ℂ ●× ℂ)1 → ℂ1 × ℂ1 that give us the right notion
of tensor on arrows. We now turn this into a category theoretic definition, which is in fact

an instance of the general and well-known construction of pulling back an internal category

ℂ along an arrow 𝑗 ∶ 𝑋 → ℂ0. This construction yields an internal category 𝕏 with 𝕏0 = 𝑋
and 𝕏1 the pullback of ⟨domℂ, codℂ⟩ along 𝑗 × 𝑗, or, equivalently, the limit in the following
diagram

𝕏1 ℂ1

𝕏0 ℂ0
𝕏0 ℂ0

𝑗1

cod𝕏
dom𝕏

𝑗

𝑗

codℂ
domℂ

69

which we abbreviate to

𝕏1
𝑗1 //

dom𝕏
��

cod𝕏
��

ℂ1
domℂ

��

codℂ
��

𝕏0 𝑗
// ℂ0

(7.1)

Next we define 𝑖 ∶ 𝕏0 → 𝕏1 as the arrow into the limit 𝕏1 given by

𝕏0 𝑖ℂ⚬𝑗

&&

id

''

id

''

𝑖𝕏
$$

𝕏1
𝑗1 //

dom𝕏
��

cod𝕏
��

ℂ1
domℂ

��

codℂ
��

𝕏0 𝑗
// ℂ0

(7.2)

from which one reads off

dom𝕏 ⚬ 𝑖𝕏 = id𝕏0 = cod𝕏 ⚬ 𝑖𝕏

Next, 𝕏2 is the pullback
𝕏2

𝜋𝕏1

��

𝜋𝕏2

��

𝕏1

cod𝕏 ��

𝕏1

dom𝕏��

𝕏0
Recalling the definition of 𝑗1 from (7.1), there is also a corresponding 𝑗2 ∶ 𝕏2 → ℂ2 due to
the fact that the product of pullbacks is a pullback of products.

𝕏2
𝜋𝕏1

}}

𝜋𝕏2
!!

𝑗2 // ℂ2
𝜋𝕏1

}}

𝜋ℂ2
!!

𝕏1

cod𝕏 !!

𝑗1
))𝕏1

dom𝕏}}

𝑗1
55ℂ1

codℂ !!

ℂ1

domℂ}}

𝕏0 𝑗
// ℂ0

(7.3)

70

Recall the definition of the limit 𝕏1 from (7.1). Then comp𝕏 ∶ 𝕏2 → 𝕏1 is the arrow into 𝕏1

𝕏2 compℂ⚬𝑗2

**
cod𝕏⚬𝜋𝕏2

,,

dom𝕏⚬𝜋𝕏1

,,

comp𝕏
&& 𝕏1

𝑗1 //

dom𝕏
��

cod𝕏
��

ℂ1
domℂ

��

codℂ
��

𝕏0 𝑗
// ℂ0

(7.4)

from which one reads off

dom𝕏 ⚬ comp𝕏 = dom𝕏 ⚬ 𝜋𝕏1 cod𝕏 ⚬ comp𝕏 = cod𝕏 ⚬ 𝜋𝕏2 𝑗1 ⚬ comp𝕏 = compℂ ⚬ 𝑗2

and the remaining equations comp𝕏 ⚬ ⟨𝑖𝕏 ⚬ dom𝕏, id𝕏1 ⟩ = id𝕏1 = comp𝕏 ⚬ ⟨id𝕏1 , 𝑖𝕏 ⚬ cod𝕏⟩ are
also not difficult to prove.

Finally, by analogy with the definition of 𝑗2 in (7.3), 𝑗3 is defined as the unique arrow into the
pullback ℂ3, where 𝕏3 is defined in the expected way:

𝕏3
left𝕏

}}

right𝕏
!!

𝑗3
// ℂ3

leftℂ
}}

rightℂ
!!

𝕏2

𝜋𝕏2
!!

𝑗2
))𝕏2

𝜋𝕏1
}}

𝑗2
55ℂ2

𝜋ℂ2
!!

ℂ2

𝜋ℂ1
}}

𝕏1 𝑗1
// ℂ1

(7.5)

The equation comp ⚬ compl = comp ⚬ compr will be shown in prop. 7.7.

This ends the definition of 𝕏 as an internal category.

Note. The notion of an internal category pulled back along some 𝑗 has been formalised
in the Lean theorem prover, with the proofs available on github7.

To prove the next propositions, we will need the following lemma, which can be skipped for

now. It is a consequence of the general fact that the isomorphism [I, C](𝐾𝐴, 𝐷) ≅ C (𝐴, lim 𝐷),
defining limits, is natural in 𝐴 and 𝐷.

7https://github.com/goodlyrottenapple/lean-internal-cats

71

https://leanprover.github.io
https://github.com/goodlyrottenapple/lean-internal-cats
https://github.com/goodlyrottenapple/lean-internal-cats

Lemma 7.5. If in the diagram

𝑇

𝑓1

��

𝑓2

��

𝑘 //

ℎ
��

𝑈

𝑓′1

��

𝑓′2

��

ℎ′
��

𝕏2
𝜋𝕏1

}}

𝜋𝕏2
!!

𝑗2 // ℂ2
𝜋ℂ1

}}

𝜋ℂ2
!!

𝕏1

cod𝕏 !!

𝑗1
))𝕏1

dom𝕏}}

𝑗1
55ℂ1

codℂ !!

ℂ1

domℂ}}

𝕏0 𝑗
// ℂ0

𝑓𝑖 and 𝑓
′
𝑖 are cones commuting with 𝑗1 and 𝑘, that is, if

cod𝕏 ⚬ 𝑓1 = dom𝕏 ⚬ 𝑓2 (7.6)

codℂ ⚬ 𝑓
′
1 = domℂ ⚬ 𝑓

′
2 (7.7)

𝑗1 ⚬ 𝑓𝑖 = 𝑓
′
𝑖 ⚬ 𝑘 (7.8)

and ℎ, ℎ′ are the respective unique arrows into the pullbacks, then also

ℎ′ ⚬ 𝑘 = 𝑗2 ⚬ ℎ

holds.

Proof. It suffices to calculate

𝜋ℂ𝑖 ⚬ ℎ
′ ⚬ 𝑘 = 𝑓′𝑖 ⚬ 𝑘 = 𝑗1 ⚬ 𝑓𝑖 = 𝑗1 ⚬ 𝜋𝕏𝑖 ⚬ ℎ = 𝜋ℂ𝑖 ⚬ 𝑗2 ⚬ ℎ

This implies ℎ′ ⚬ 𝑘 = 𝑗2 ⚬ ℎ, due to the uniqueness of arrows into a limit. In full detail,
we have:

𝜋ℂ𝑖 ⚬ ℎ
′ ⚬ 𝑘 = 𝑓′𝑖 ⚬ 𝑘

which follow from the fact that ℎ′ is the unique arrow into a pullback, therefore 𝜋ℂ𝑖⚬ℎ
′ =

𝑓′𝑖 ,
𝑓′𝑖 ⚬ 𝑘 = 𝑗1 ⚬ 𝑓𝑖

follow from (7.8),

𝑗1 ⚬ 𝑓𝑖 = 𝑗1 ⚬ 𝜋𝕏𝑖 ⚬ ℎ

follow from the fact that ℎ is the unique arrow into a pullback, therefore 𝜋𝕏𝑖 ⚬ ℎ = 𝑓𝑖,
and finally

𝑗1 ⚬ 𝜋𝕏𝑖 ⚬ ℎ = 𝜋ℂ𝑖 ⚬ 𝑗2 ⚬ ℎ

which follow due to the equations 𝑗1 ⚬ 𝜋𝕏𝑖 = 𝜋ℂ𝑖 ⚬ 𝑗2, which can be read off from the

72

definition of 𝑗2, given in (7.3).

Proposition 7.6. comp𝕏 ⚬ ⟨𝑖𝕏 ⚬ dom𝕏, id𝕏1 ⟩ = id𝕏1 = comp𝕏 ⚬ ⟨id𝕏1 , 𝑖𝕏 ⚬ cod𝕏⟩.

Proof. We show the first equality comp𝕏 ⚬ ⟨𝑖𝕏 ⚬ dom𝕏, id𝕏1 ⟩ = id𝕏1 . According to the
definition of the limit 𝕏1

𝕏1
𝑗1⚬comp𝕏⚬⟨𝑖𝕏⚬dom𝕏,id𝕏1 ⟩

, ,cod𝕏⚬comp𝕏⚬⟨𝑖𝕏⚬dom𝕏,id𝕏1 ⟩

//

dom𝕏⚬comp𝕏⚬⟨𝑖𝕏⚬dom𝕏,id𝕏1 ⟩

//

id𝕏

,, 𝕏1 𝑗1 //

dom𝕏
��

cod𝕏
��

ℂ1
domℂ

��

codℂ
��

𝕏0 𝑗
// ℂ0

it suffices to show

dom𝕏 ⚬ comp𝕏 ⚬ ⟨𝑖𝕏 ⚬ dom𝕏, id𝕏1 ⟩ = dom𝕏

cod𝕏 ⚬ comp𝕏 ⚬ ⟨𝑖𝕏 ⚬ dom𝕏, id𝕏1 ⟩ = cod𝕏

𝑗1 ⚬ comp𝕏 ⚬ ⟨𝑖𝕏 ⚬ dom𝕏, id𝕏1 ⟩ = 𝑗1

The first two equalities follow from (7.4), namely dom𝕏 ⚬ comp𝕏 = dom𝕏 ⚬ 𝜋𝕏1 and
cod𝕏 ⚬ comp𝕏 = cod𝕏 ⚬ 𝜋𝕏2.

dom𝕏 ⚬ comp𝕏 ⚬ ⟨𝑖𝕏 ⚬ dom𝕏, id𝕏1 ⟩ = dom𝕏 ⚬ 𝜋𝕏1 ⚬ ⟨𝑖𝕏 ⚬ dom𝕏, id𝕏1 ⟩

= dom𝕏 ⚬ 𝑖𝕏 ⚬ dom𝕏

= id𝕏0 ⚬ dom𝕏

= dom𝕏

cod𝕏 ⚬ comp𝕏 ⚬ ⟨𝑖𝕏 ⚬ dom𝕏, id𝕏1 ⟩ = cod𝕏 ⚬ 𝜋𝕏2 ⚬ ⟨𝑖𝕏 ⚬ dom𝕏, id𝕏1 ⟩

= cod𝕏 ⚬ id𝕏1
= cod𝕏

73

𝑗1 ⚬ comp𝕏 ⚬ ⟨𝑖𝕏 ⚬ dom𝕏, id𝕏1 ⟩ = compℂ ⚬ 𝑗2 ⚬ ⟨𝑖𝕏 ⚬ dom𝕏, id𝕏1 ⟩

= compℂ ⚬ ⟨𝑖ℂ ⚬ domℂ, idℂ1 ⟩ ⚬ 𝑗1

= 𝑗1

In the last equation, we have 𝑗1 ⚬ comp𝕏 = compℂ ⚬ 𝑗2 by definition of comp, see (7.4).
To prove 𝑗2 ⚬ ⟨𝑖𝕏 ⚬ dom𝕏, id𝕏1 ⟩ = ⟨𝑖ℂ ⚬ domℂ, idℂ1 ⟩ ⚬ 𝑗1, we instantiate lem. 7.5 with:

𝑘 = 𝑗1
𝑓1 = 𝑖𝕏 ⚬ dom𝕏

𝑓2 = id𝕏1
ℎ = ⟨𝑖𝕏 ⚬ dom𝕏, id𝕏1 ⟩

𝑓′1 = 𝑖ℂ ⚬ domℂ

𝑓′2 = idℂ1
ℎ′ = ⟨𝑖ℂ ⚬ domℂ, idℂ1 ⟩

Instantiating the equations (7.6)-(7.8) with the data above, we need to show:

cod𝕏 ⚬ 𝑖𝕏 ⚬ dom𝕏 = dom𝕏 ⚬ id𝕏1
codℂ ⚬ 𝑖ℂ ⚬ domℂ = domℂ ⚬ idℂ1
𝑗1 ⚬ 𝑖𝕏 ⚬ dom𝕏 = 𝑖ℂ ⚬ domℂ ⚬ 𝑗1

𝑗1 ⚬ id𝕏1 = idℂ1 ⚬ 𝑗1

The first two equations follow from cod𝕏 ⚬ 𝑖𝕏 = id𝕏0 and codℂ ⚬ 𝑖ℂ = idℂ0 , see (7.2). The
third follows from (7.2) and (7.1):

𝑗1 ⚬ 𝑖𝕏 ⚬ dom𝕏 = 𝑖ℂ ⚬ 𝑗 ⚬ dom𝕏

= 𝑖ℂ ⚬ domℂ ⚬ 𝑗1

and the last equality is trivial.

Now, for the other equality, comp𝕏 ⚬ ⟨id𝕏1 , 𝑖𝕏 ⚬ cod𝕏⟩ = id𝕏1 . Again we need to show

dom𝕏 ⚬ comp𝕏 ⚬ ⟨id𝕏1 , 𝑖𝕏 ⚬ cod𝕏⟩ = dom𝕏

cod𝕏 ⚬ comp𝕏 ⚬ ⟨id𝕏1 , 𝑖𝕏 ⚬ cod𝕏⟩ = cod𝕏

𝑗1 ⚬ comp𝕏 ⚬ ⟨id𝕏1 , 𝑖𝕏 ⚬ cod𝕏⟩ = 𝑗1

The first two equalities follow from (7.4), namely dom𝕏 ⚬ comp𝕏 = dom𝕏 ⚬ 𝜋𝕏1 and

74

cod𝕏 ⚬ comp𝕏 = cod𝕏 ⚬ 𝜋𝕏2.

dom𝕏 ⚬ comp𝕏 ⚬ ⟨id𝕏1 , 𝑖𝕏 ⚬ cod𝕏⟩ = dom𝕏 ⚬ 𝜋𝕏1 ⚬ ⟨id𝕏1 , 𝑖𝕏 ⚬ cod𝕏⟩

= dom𝕏 ⚬ id𝕏1
= dom𝕏

cod𝕏 ⚬ comp𝕏 ⚬ ⟨id𝕏1 , 𝑖𝕏 ⚬ cod𝕏⟩ = cod𝕏 ⚬ 𝜋𝕏2 ⚬ ⟨id𝕏1 , 𝑖𝕏 ⚬ cod𝕏⟩

= cod𝕏 ⚬ 𝑖𝕏 ⚬ cod𝕏
= id𝕏0 ⚬ cod𝕏

= cod𝕏

𝑗1 ⚬ comp𝕏 ⚬ ⟨id𝕏1 , 𝑖𝕏 ⚬ cod𝕏⟩ = compℂ ⚬ 𝑗2 ⚬ ⟨id𝕏1 , 𝑖𝕏 ⚬ cod𝕏⟩

= compℂ ⚬ ⟨idℂ1 , 𝑖ℂ ⚬ codℂ⟩ ⚬ 𝑗1

= 𝑗1

To prove 𝑗2 ⚬ ⟨id𝕏1 , 𝑖𝕏 ⚬ cod𝕏⟩ = ⟨idℂ1 , 𝑖ℂ ⚬ codℂ⟩ ⚬ 𝑗1, we use lem. 7.5, checking:

cod𝕏 ⚬ id𝕏1 = dom𝕏 ⚬ 𝑖𝕏 ⚬ cod𝕏

codℂ ⚬ idℂ1 = domℂ ⚬ 𝑖ℂ ⚬ codℂ

𝑗1 ⚬ 𝑖𝕏 ⚬ cod𝕏 = 𝑖ℂ ⚬ codℂ ⚬ 𝑗1
𝑗1 ⚬ id𝕏1 = idℂ1 ⚬ 𝑗1

where the first two equations follow from dom𝕏 ⚬ 𝑖𝕏 = id𝕏0 and domℂ ⚬ 𝑖ℂ = idℂ0 , see
(7.2) and the third follows from (7.2) and (7.1):

𝑗1 ⚬ 𝑖𝕏 ⚬ cod𝕏 = 𝑖ℂ ⚬ 𝑗 ⚬ cod𝕏
= 𝑖ℂ ⚬ codℂ ⚬ 𝑗1

and the last equality is, again, trivial.

Proposition 7.7. comp𝕏 ⚬ compl𝕏 = comp𝕏 ⚬ compr𝕏

Proof. To show that composition is associative, we need to recall the definition of

75

compl and compr from def. B.1, which leads us to consider

𝕏3 𝑗1⚬comp𝕏⚬compl𝕏

,,

𝑗1⚬comp𝕏⚬compr𝕏

,,

cod𝕏⚬comp𝕏⚬compl𝕏

,,

cod𝕏⚬comp𝕏⚬compr𝕏

,,

dom𝕏⚬comp𝕏⚬compl𝕏 44

dom𝕏⚬comp𝕏⚬compr𝕏 44

comp𝕏⚬compl𝕏

,,

comp𝕏⚬compr𝕏

, , 𝕏1 𝑗1 //

dom𝕏
��

cod𝕏
��

ℂ1
domℂ

��

codℂ
��

𝕏0 𝑗
// ℂ0

To show comp𝕏 ⚬ compl𝕏 = comp𝕏 ⚬ compr𝕏 it suffices to show

dom𝕏 ⚬ comp𝕏 ⚬ compl𝕏 = dom𝕏 ⚬ comp𝕏 ⚬ compr𝕏
cod𝕏 ⚬ comp𝕏 ⚬ compl𝕏 = cod𝕏 ⚬ comp𝕏 ⚬ compr𝕏
𝑗1 ⚬ comp𝕏 ⚬ compl𝕏 = 𝑗1 ⚬ comp𝕏 ⚬ compr𝕏

For the first, we calculate

dom𝕏 ⚬ comp𝕏 ⚬ compl𝕏 = dom𝕏 ⚬ 𝜋𝕏1 ⚬ compl𝕏 dom𝕏 ⚬ comp𝕏 = dom𝕏 ⚬ 𝜋𝕏1
= dom𝕏 ⚬ comp𝕏 ⚬ left𝕏 Def of compl

= dom𝕏 ⚬ 𝜋𝕏1 ⚬ left𝕏 dom𝕏 ⚬ comp𝕏 = dom𝕏 ⚬ 𝜋𝕏1
= dom𝕏 ⚬ 𝜋𝕏1 ⚬ compr𝕏 Def of compr

= dom𝕏 ⚬ comp𝕏 ⚬ compr𝕏 dom𝕏 ⚬ comp𝕏 = dom𝕏 ⚬ 𝜋𝕏1

and the second is similar:

cod𝕏 ⚬ comp𝕏 ⚬ compl𝕏 = cod𝕏 ⚬ 𝜋𝕏2 ⚬ compl𝕏 cod𝕏 ⚬ comp𝕏 = cod𝕏 ⚬ 𝜋𝕏2
= cod𝕏 ⚬ 𝜋𝕏2 ⚬ right𝕏 Def of compl

= cod𝕏 ⚬ comp𝕏 ⚬ right𝕏 cod𝕏 ⚬ comp𝕏 = cod𝕏 ⚬ 𝜋𝕏2
= cod𝕏 ⚬ 𝜋𝕏2 ⚬ compr𝕏 Def of compr

= cod𝕏 ⚬ comp𝕏 ⚬ compr𝕏 cod𝕏 ⚬ comp𝕏 = cod𝕏 ⚬ 𝜋𝕏2

The third, proceeding as in the proof of prop. 7.6, follows once we establish that the

following commute:

𝑗2 ⚬ compl𝕏 = complℂ ⚬ 𝑗3 (7.9)

𝑗2 ⚬ compr𝕏 = comprℂ ⚬ 𝑗3 (7.10)

But these two equations are again instances of lem. 7.5.

76

𝕏3

comp𝕏⚬left𝕏

��

𝜋𝕏2⚬right𝕏

��

𝑗3
//

compl𝕏
��

ℂ3

compℂ⚬leftℂ

��

𝜋ℂ2⚬rightℂ

��

complℂ
��

𝕏2
𝜋𝕏1

}}

𝜋𝕏2
!!

𝑗2 // ℂ2
𝜋𝕏1

}}

𝜋ℂ2
!!

𝕏1

cod𝕏 !!

𝑗1
))𝕏1

dom𝕏}}

𝑗1
55ℂ1

codℂ !!

ℂ1

domℂ}}

𝕏0 𝑗
// ℂ0

Instantiating the diagram for the first equation, we only have to check that 𝑗1⚬comp𝕏⚬
left𝕏 = compℂ ⚬ leftℂ ⚬ 𝑗3 and 𝑗1 ⚬𝜋𝕏2 ⚬ right𝕏 = 𝜋ℂ2 ⚬ rightℂ ⚬ 𝑗3, as the other equations
follow from the respective definitions of compl𝕏 and complℂ.

𝑗1 ⚬ comp𝕏 ⚬ left𝕏 = compℂ ⚬ 𝑗2 ⚬ left𝕏 By (7.4)

= compℂ ⚬ leftℂ ⚬ 𝑗3 By (7.5)

𝑗1 ⚬ 𝜋𝕏2 ⚬ right𝕏 = 𝜋ℂ2 ⚬ 𝑗2 ⚬ right𝕏 By (7.3)

= 𝜋ℂ2 ⚬ rightℂ ⚬ 𝑗3 By (7.5)

The proof of (7.10) follows in the same fashion.

Having proven equations (7.9) and (7.10), we show the final equality:

𝑗1 ⚬ comp𝕏 ⚬ compl𝕏 = compℂ ⚬ 𝑗2 ⚬ compl𝕏
= compℂ ⚬ complℂ ⚬ 𝑗3
= compℂ ⚬ comprℂ ⚬ 𝑗3
= compℂ ⚬ 𝑗2 ⚬ compr𝕏
= 𝑗1 ⚬ comp𝕏 ⚬ compr𝕏

We have shown that composition is associative.

We have seen that the pullback of an internal category ℂ along an arrow 𝑗 with codomain
ℂ0 is an internal category:

77

Proposition 7.8. Given an internal category ℂ and an arrow 𝑗 ∶ 𝑋 → ℂ0 there is an
internal category 𝕏 and an internal functor 𝕛 ∶ 𝕏 → ℂ such that 𝕏0 = 𝑋 and 𝕛0 = 𝑗.

Moreover, this internal category 𝕏, or rather 𝕛 ∶ 𝕏 → ℂ, has a universal property known as a
cartesian lifting. To make this precise, we recall the notion of a fibred category, or fibration.

Definition 7.9. [Fibration [58, 59]]

If 𝑃 ∶ W → V is a functor, then 𝕛 ∶ 𝕏 → 𝕐 is a cartesian lifting of 𝑗 ∶ 𝑋 → 𝑃𝕐 (where
𝑗 = 𝑃𝕛) if for all 𝕜 ∶ 𝕎 → 𝕐 and all ℎ ∶ 𝑃𝕎 → 𝑋 with 𝑃𝕜 = 𝑗 ⚬ ℎ there is a unique
𝕙 ∶ 𝕎 → 𝕏 such that 𝕛 ⚬ 𝕙 = 𝕜 and 𝑃𝕙 = ℎ.

𝕎

𝕜

&&

!𝕙

��

𝕏
𝕛

// 𝕐

𝑃𝕎

𝑃𝕜=𝑗⚬ℎ

&&

𝑃𝕙=ℎ

��

𝑋
𝑗

// 𝑃𝕐

Moreover, 𝑃 ∶ W → V is called a (Grothendieck) fibration if all 𝑗 ∶ 𝑋 → 𝑃𝕐 have a
cartesian lifting for all 𝕐 inW. If 𝑃 ∶ W → V is a fibration, the subcategory ofW that

has as arrows the arrows 𝕗 such that 𝑃𝕗 = id𝑌 is called the fibre over 𝑌 .

The next lemma is a strengthening of prop. 7.8.

Lemma 7.10. Let V be a category with finite limits. The forgetful functor Cat(V) → V
is a fibration.

Proof. We have already shown how to lift 𝑗 ∶ 𝑋 → ℂ0 to 𝕛 ∶ 𝕏 → ℂ. One can show
that this is a cartesian lifting by drawing out the appropriate diagram. Namely, we

have the forgetful functor (−)0 ∶ Cat(V) → V, which sends an internal category to its
“object of objects”, an internal category 𝕏, 𝕐 and an internal functor 𝕛 between them.
Given another internal category 𝕎 and an internal functor 𝕜 ∶ 𝕎 → 𝕐 and an arrow
ℎ ∶ 𝕎0 → 𝕐0, s.t. 𝕜0 = 𝕛0⚬ℎ, we show there is a unique 𝕙, s.t. 𝕜 = 𝕛⚬𝕙. This essentially
means we need to fill in the following diagram, such that all sub-diagrams commute:

78

𝕎2

𝕜2
((

𝜋1
��

𝜋2
��

comp
��

𝕏2
𝕛2 //

𝜋1
��

𝜋2
��

comp
��

𝕐2
𝜋1

��

𝜋2
��

comp
��

𝕎1 𝕜1
44

dom𝕎
��

cod𝕎
��

𝕏1
𝕛1 //

dom𝕏
��

cod𝕏
��

𝕐1
dom𝕐

��

cod𝕐
��

𝕎0
𝕜0

66ℎ
//

𝑖𝕎

OO

𝕏0 𝕛0
//

𝑖𝕏

OO

𝕐0

𝑖𝕐

OO

Since our category has all finite limits, we can define 𝕙1 as an arrow into the limit 𝕏1:

𝕎1
𝕜1

&&
cod𝕎⚬ ℎ

((

dom𝕎⚬ ℎ

((

𝕙1
%%

𝕏1
𝕛1 //

dom𝕏
��

cod𝕏
��

𝕐1
dom𝕐

��

cod𝕐
��

𝕏0 𝕛0
// 𝕐0

We obtain 𝕙2 in a similar fashion, thus getting a unique 𝕙 = (𝕙2, 𝕙1, ℎ), for which we
have 𝕜 = 𝕛 ⚬ 𝕙.

Instantiating lem. 7.10 with ℂ × 𝔻 ∈ Cat(V) for 𝕐 and 𝑗 ∶ ℂ0 ×○ 𝔻0 → ℂ0 × 𝔻0 for 𝑗 ∶ 𝕏0 → 𝕐0,
gives us the desired result from the beginning of this section, namely that the tensor ×○ in

a symmetric monoidal category (V, 1, ×○) can be lifted to a tensor ●× ∶ 𝐶𝑎𝑡(V) × 𝐶𝑎𝑡(V) →
𝐶𝑎𝑡(V):

Corollary 7.11. The arrow 𝑗 ∶ ℂ0 ×○ 𝔻0 → ℂ0 × 𝔻0 lifts to a morphism of internal

categories 𝕛 ∶ ℂ ●× 𝔻 → ℂ × 𝔻. Moreover, 𝕛 is the cartesian lifting of 𝑗.

To show that this construction is functorial we need to use that ×○∶ V × V → V is functorial

and that 𝑗 ∶ ℂ0 ×○ 𝔻0 → ℂ0 × 𝔻0 is natural in ℂ and 𝔻. In order to lift such natural
transformations, which are arrows in the functor category V Cat(V)×Cat(V), we use

Lemma 7.12. If 𝑃 ∶ W → V is a fibration and A is a category, then 𝑃A ∶ W A → V A is

a fibration.

Proof. 𝑃A is defined via post-composition with 𝑃, that is, 𝑃A(𝔾) = 𝑃 ⚬ 𝔾 = 𝑃𝔾 and
𝑃A(𝜂 ∶ 𝔾 → ℍ) = 𝑃𝜂.

To show that 𝑃A is a fibration, i.e.that all 𝑗 ∶ 𝐺 → 𝑃ℍ have a cartesian lifting 𝕛 ∶ 𝔾 → ℍ,

79

we lift 𝑗 pointwise, using the fact that for all 𝑗𝐴 ∶ 𝐺𝐴 → 𝑃ℍ𝐴 we have

𝕛𝐴 ∶ 𝔾𝐴 → ℍ𝐴

due to 𝑃 being a fibration. It remains to check that 𝕛 is a cartesian lifting, that is, given
natural transformations 𝕜 ∶ 𝔽 → ℍ and ℎ ∶ 𝑃𝔽 → 𝐺, such that 𝑃𝕜 = 𝑃𝕛 ⚬ ℎ, there is a
unique 𝕙, s.t. the following diagrams commute:

𝔽
𝕜

!𝕙

𝔾
𝕛

ℍ

𝑃𝔽
𝑃𝕜 = 𝑃𝕛⚬ℎ

𝑃𝕙=ℎ

𝐺
𝑗 = 𝑃𝕛

𝑃ℍ

Since 𝕜, 𝕛 and ℎ are natural transformations, i.e a family of morphisms, for any 𝐴, 𝐵 ∈ A
and 𝑓 ∶ 𝐴 → 𝐵, we have:

𝔽𝐴 𝔽𝑓
//

𝕜𝐴
��

𝐹𝐵
𝕜𝐵
��

ℍ𝐴 ℍ𝑓
// ℍ𝐵

𝔾𝐴 𝔾𝑓
//

𝕛𝐴

OO

𝐺𝐵

𝕛𝐵

OO

𝑃𝔽𝐴 𝑃𝔽𝑓
//

𝑃𝕜𝐴
��

ℎ𝐴

��

𝑃𝔽𝐵
𝑃𝕜𝐵

��

ℎ𝐵

��

𝑃ℍ𝐴 𝑃ℍ𝑓
// 𝑃ℍ𝐵

𝑃𝔾𝐴 𝑃𝔾𝑓
//

𝑃𝕛𝐴

OO

𝑃𝔾𝐵

𝑃𝕛𝐵

OO

As 𝑃 is a fibration, we obtain unique 𝕙𝐴 and 𝕙𝐵 for the left and right sub-diagrams
above, s.t. 𝑃𝕙𝐴 = ℎ𝐴 and 𝑃𝕙𝐵 = ℎ𝐵 , thus obtaining a unique natural transformation 𝕙,
for which 𝕜 = 𝕙 ⚬ 𝕛.

Instantiating the lemma with 𝑃 = (−)0 ∶ Cat(V) → V and A = Cat(V) × Cat(V), we obtain

80

as a corollary that lifting the tensor ×○∶ V × V → V to ●× ∶ 𝐶𝑎𝑡(V) × 𝐶𝑎𝑡(V) → 𝐶𝑎𝑡(V) is
functorial:

Theorem 7.13. Let (V, 1, ×○) be a (symmetric) monoidal category with finite limits in

which the monoidal unit is the terminal object. Let 𝑈 ∶ Cat(V) → V be the forgetful

functor from categories internal in V. Then the canonical arrow 𝑗 ∶ ℂ0 ×○ 𝔻0 → ℂ0 × 𝔻0
lifts to a natural transformation 𝕛 ∶ ℂ ●× 𝔻 → ℂ × 𝔻. Moreover, (Cat(V), 𝕀, ●×) inher-
its from (V, 1, ×○) the structure of a (symmetric) monoidal category with finite limits in
which the monoidal unit is the terminal object.

Proof. Let

𝔾 ∶ Cat(V) × Cat(V) → Cat(V) 𝐹 ∶ V × V → V 𝔽 ∶ Cat(V) × Cat(V) → Cat(V)
𝔾 (𝔸, 𝔹) = 𝔸 × 𝔹 𝐹(𝑋, 𝑌) = 𝑋 ×○ 𝑌 𝔽(𝔸, 𝔹) = 𝔸 ●× 𝔹

and 𝑗 ∶ 𝐹𝑈 → 𝑈𝔾 the associated natural transformation. We also have, by definition,
that 𝐹𝑈 = 𝑈𝔽, namely for all 𝔸, 𝔹 we have 𝔸0 ×○ 𝔹0 = (𝔸 ●× 𝔹)0. Therefore, 𝑗 lifts to a
natural transformation 𝕛 ∶ 𝔽 → 𝔾 where 𝕛 is a cartesian lifting of 𝑗 by lem. 7.12. As a
direct consquence, 𝔽 must be a functor.

In this work we only need internal monoidal categories that are strict. In the same way as

a strict monoidal category is a monoid in (Cat, 1, ×), an internal strict monoidal category is
a monoid in (Cat(V), 𝕀, ●×):

Definition 7.14. [Internal monoidal category]

Let (V, 1, ×○) be a symmetric monoidal category with finite limits in which the monoidal
unit is the terminal object and let (Cat(V), 𝕀, ●×) be the induced symmetric monoidal
category of internal categories in V. A strict internal monoidal category ℂ is a monoid
(ℂ, ∅, ⊙) in (Cat(V), 𝕀, ●×).

Remark 7.15. It may be useful to recap and catalogue the different tensors. The

first one is the cartesian product × of categories, with the help of which we define a
monoidal product ×○ on a particular categery V and then lift it to a monoidal product
●× on the category of categories internal in V. This then allows us to define on an
internal category ℂ a tensor ⊙, which we also call an internal tensor:

×○∶ V × V → V
●× ∶ Cat(V) × Cat(V) → Cat(V)

⊙ ∶ ℂ ●× ℂ → ℂ

81

Example 7.16. Picking up ex. 7.3 again, for the category n𝔽
::

of finite sets of names and

functions, we choose the empty set for ∅ and for the internal tensor ⊙ = ⊎, the union
of disjoint sets on objects and, on arrows, the union of functions with both disjoint

domains and disjoint codomains.

Remark 7.17. In the classical case where V = Cat and both ×○ and ●× are the cartesian
product, the interchange law for ⊙ follows from ⊙ being a functor. In the same way,
in our more general situation, the interchange law for ⊙ states that ⊙ is an internal
functor (B.2)

(ℂ ●× ℂ)2
compℂ●× ℂ

//

⊙2
��

(ℂ ●× ℂ)1
⊙1
��

ℂ2 compℂ
// ℂ1

Example 7.18. In the category (n𝔽
::
, ∅, ⊎) of finite sets of names and functions, see ex. 7.3,

we have the interchange law

(𝕗 ⊎ 𝕘);(𝕗′ ⊎ 𝕘′) = (𝕗;𝕗′) ⊎ (𝕘;𝕘′)

with the right-hand side being defined whenever the left-hand side is.

7.3 Examples

Before we give a formal definition of nominal PROP
::::

s and nominal monoidal theories (NMT
:::

s)

in the next section, we present as examples those NMT
:::

s that correspond to the SMT
:::

s of

fig. 7.3. The significant differences between fig. 7.3 and fig. 7.4 are that wires now carry labels

and that there is a new generator a b which allows us to change the label of a

wire. Moreover, in the nominal setting rules for wire crossings are not needed.

The example below lists presentations of nominal monoidal theories for the nominal

monoidal categories of finite sets and functions, injections, surjections, partial functions

and relations, respectively.

Example 7.19. The category of finite sets and

• bijections is presented by the empty signature and equations.

• injections is presented by Σ𝑖 = {𝜂𝑎 ∶ ∅ → {𝑎} ∣ 𝑎 ∈ N } and 𝐸𝑖 = ∅. The
equations

82

a x c a c= a=a a

a

x

b

c

d

x

y

w

b

a

d

c

v
=

x

a

y

b ba=

x a a=

a

b

x

d

c

a

b
d

c

x
==

a

c

b

b

c

a

a x

c

b

a

c

b

a

x

b

c

a

c

b
==

a

b

x

a b=

a

x

b

a

b
==x

xa=a

c

a

b
=

b

a

c

b

c

x

a

d

=

b

c
a

d

x

b

a

x
=ba

a

x

b

a

b
=

b

a

c
=

bx

a

c

b

x

c

a=

b

a

c

bijections nB , injections nI , surjections nS , functions nF , partial functions nP and

relations nR

Figure 7.4: Nominal monoidal theories

x a a=

follow from those of fig. 7.8.

• surjections is presented by Σ𝑠 = {𝜇𝑎𝑏𝑐 ∶ {𝑎, 𝑏} → {𝑐} ∣ 𝑎, 𝑏, 𝑐 ∈ N } and equations
𝐸𝑠 are (𝜇𝑎𝑏𝑥 ⊎ 𝑖𝑑𝑐) ⚬ 𝜇𝑐𝑑𝑥 = (𝜇𝑏𝑐𝑥 ⊎ 𝑖𝑑𝑎) ⚬ 𝜇𝑎𝑑𝑥 , presented graphically as

a

b

x

d

c

a

b
d

c

x
=

• functions has Σ𝑓 = Σ𝑖 ∪Σ𝑠 and equations 𝐸𝑓 are 𝐸𝑖 ∪𝐸𝑠 plus (𝑖𝑑𝑎 ⊎𝜂𝑥) ⚬𝜇𝑎𝑏𝑥 = 𝛿𝑎𝑏

• partial functions has Σ𝑝𝑓 = Σ𝑓 ∪ {�̂�𝑎 ∶ {𝑎} → ∅ ∣ 𝑎 ∈ N } and equations 𝐸𝑝𝑓 are
𝐸𝑓 plus 𝜂𝑥 ⚬ �̂�𝑥 = 𝜀 and 𝜇𝑎𝑏𝑥 ⚬ �̂�𝑥 = �̂�𝑎 ⊎ �̂�𝑏, shown below

x =

a

x

b

a

b
=

• relations has Σ𝑟 = Σ𝑝𝑓 ∪ {�̂�𝑎𝑏𝑐 ∶ {𝑎} → {𝑏, 𝑐} ∣ 𝑎, 𝑏, 𝑐 ∈ N }, and equations 𝐸𝑟 are
𝐸𝑝𝑓 plus the following

83

b

c

x

a

d

b

c
a

d

x
=

a

x

b

c

d

x

y

w

b

a

d

c

v
=

b

a

x

ba=

a

x

b

a

b
=

x

a

y

b ba=

Theorem 7.20. The calculi of fig. 7.4 are sound and complete, that is, the categories
presented by these calculi are isomorphic to the categories of finite sets of names with

the respective maps.

We can prove this theorem in the same general fashion as the well-known proofs for SMT
:::

s

(see e.g. Lafont [49]) and proceed by showing that each diagram 𝑓 ∶ 𝐴 → 𝐵 can be rewritten
to one in normal form, with the normal form being a direct syntactic representation of

the semantic function/relation represented by 𝑓 . Such proofs for NMT
:::

s seem easier than

the corresponding proofs for SMT
:::

s due to the absence of wire crossings. For example, in

the case of bijections, it is immediate that, using the grey rules of fig. 7.4, every nominal

diagram rewrites to a normal form which is just a parallel composition of diagrams of the

form a b .

However, if we already have a soundness and completeness proof of an SMT
:::

for some se-

mantic category, we can transfer this result over to an NMT
:::

, which presents the nominal

version of this semantic category. For full details of this construction, see sec. 7.6.3.

7.4 Nominal monoidal theories and nominal PROPs

In this section, we introduce nominal PROP
::::

s as internal monoidal categories in nominal sets.

We first spell out the details of what that means in elementary terms and then discuss the

notion of diagrammatic 𝛼-equivalence.

7.4.1 Nominal monoidal theories

A nominal monoidal theory (Σ, 𝐸) is given by a set Σ of generators and a nominal set 𝐸 of
equations. The set of nominal generators 𝑛Σ is generated by the set Σ of ‘ordinary’ genera-

84

tors 𝛾 ∶ 𝑛 → 𝑚, each 𝛾, giving rise to a set of nominal generators [𝒂⟩𝛾⟨𝒃] ∶ 𝐴 → 𝐵 where 𝒂, 𝒃
are unique lists of size 𝑛, 𝑚 and whose underlying sets are 𝐴, 𝐵 respectively. The nominal
generators 𝑛Σ are closed under permutations

𝜋 ⋅ [𝒂⟩𝛾⟨𝒃] ∶ 𝜋 ⋅ 𝐴 → 𝜋 ⋅ 𝐵 = [𝜋(𝒂)⟩𝛾⟨𝜋(𝒃)]. (𝜋-def)

The set of nominal terms or 𝑛Trm
::::

s is given by closing under the operations of fig. 7.5, which

should be compared with fig. 7.1.

𝛾 ∶ 𝑚 → 𝑛 ∈ Σ
[𝒂⟩𝛾⟨𝒃] ∶ 𝐴 → 𝐵 𝑖𝑑𝑎 ∶ {𝑎} → {𝑎} 𝛿𝑎𝑏 ∶ {𝑎} → {𝑏}

𝑡 ∶ 𝐴 → 𝐵 𝑡′ ∶ 𝐴′ → 𝐵′

𝑡 ⊎ 𝑡′ ∶ 𝐴 ⊎ 𝐴′ → 𝐵 ⊎ 𝐵′
𝑡 ∶ 𝐴 → 𝐵 𝑠 ∶ 𝐵 → 𝐶

𝑡 ; 𝑠 ∶ 𝐴 → 𝐶
𝑡 ∶ 𝐴 → 𝐵

(𝑎 𝑏) 𝑡 ∶ (𝑎 𝑏) ⋅ 𝐴 → (𝑎 𝑏) ⋅ 𝐵

Figure 7.5: NMT Terms

Every NMT
:::

freely generates a monoidal category internal in nominal sets by quotienting the

generated terms by equations in 𝐸, together with equations NMT
:::

:

• the equations that state that id and ; obey the laws of a category
• the equations stating that id∅ and ⊎ are a monoid
• the equations of an internal monoidal category of fig. 7.6

• the equations of permutation actions of fig. 7.7

• the equations on the interaction of generators with bijections 𝛿 of fig. 7.88

𝑡 ⊎ 𝑠 = 𝑠 ⊎ 𝑡 (NMT-comm)

(𝑠 ; 𝑡) ⊎ (𝑢 ; 𝑣) = (𝑠 ⊎ 𝑢) ; (𝑡 ⊎ 𝑣) (NMT-ch)

Figure 7.6: NMT Equations of ⊎

(𝑎 𝑏)𝑖𝑑𝑥 = 𝑖𝑑(𝑎 𝑏)⋅𝑥 (𝑎 𝑏)𝛿𝑥𝑦 = 𝛿(𝑎 𝑏)⋅𝑥 (𝑎 𝑏)⋅𝑦 (𝑎 𝑏)𝛾 = (𝑎 𝑏) ⋅ 𝛾

(𝑎 𝑏)(𝑥 ⊎ 𝑦) = (𝑎 𝑏)𝑥 ⊎ (𝑎 𝑏)𝑦 (𝑎 𝑏)(𝑥 ; 𝑦) = (𝑎 𝑏)𝑥 ; (𝑎 𝑏)𝑦

Figure 7.7: NMT Equations of the permutation actions

For terms to form a nominal set, we need equations between permutations to hold, along

with the equations of fig. 7.7 that specify how permutations act on terms.

8The main difference with the equations in fig. 7.2 is that the interchange law for ⊎ is required to hold only
if both sides are defined and that the two laws involving symmetries are replaced by the commutativity of ⊎.

85

𝛿𝑎𝑎 = id𝑎 𝛿𝑎𝑏 ; 𝛿𝑏𝑐 = 𝛿𝑎𝑐

[𝑎1, … , 𝑎𝑖, … , 𝑎𝑚⟩𝛾⟨𝒃] ∶ {𝑎𝑖} ⊎ 𝐴 → 𝐵
(𝛿𝑥𝑎𝑖 ⊎ id𝐴) ; [𝑎1, … , 𝑎𝑖, … , 𝑎𝑚⟩𝛾⟨𝒃] = [𝑎1, … , 𝑥, … , 𝑎𝑚⟩𝛾⟨𝒃]

(NMT-left)

[𝒂⟩𝛾⟨𝑏1, … , 𝑏𝑖, … , 𝑏𝑛] ∶ 𝐴 → 𝐵 ⊎ {𝑏𝑖}
[𝒂⟩𝛾⟨𝑏1, … , 𝑏𝑖, … , 𝑏𝑛] ; (id𝐵 ⊎ 𝛿𝑏𝑖𝑥) = [𝒂⟩𝛾⟨𝑏1, … , 𝑥, … , 𝑏𝑛]

(NMT-right)

Figure 7.8: NMT Equations of 𝛿

All the equations presented in the figures above are routine, with the exception of the last

two, specifying the interaction of renamings 𝛿 with the generators [𝒂⟩𝛾⟨𝒃] ∈ Σ, which we
also depict in diagrammatic form:

bi x = xγ γ x γ =ai x γ

Instances of these rules can be seen in fig. 7.4, where they are distinguished by a striped

background.

7.4.2 Diagrammatic 𝛼-equivalence

The equations of fig. 7.7 and fig. 7.8 introduce a notion of diagrammatic 𝛼-equivalence, which
allows us to rename ‘internal’ names and to contract renamings.

Definition 7.21. Two terms of a nominal monoidal theory are 𝛼-equivalent if their
equality follows from the equations in fig. 7.7 and fig. 7.8.

Every permutation 𝜋 of names gives rise to bijective functions 𝜋𝐴 ∶ 𝐴 → 𝜋[𝐴] = {𝜋(𝑎) ∣
𝑎 ∈ 𝐴} = 𝜋 ⋅ 𝐴. Any such 𝜋𝐴, as well as the inverse 𝜋

−1
𝐴 , are parallel compositions of 𝛿𝑎𝑏

for suitable 𝑎, 𝑏 ∈ N. In fact, we have 𝜋𝐴 = ⨄𝑎∈𝐴 𝛿𝑎 𝜋(𝑎) and 𝜋
−1
𝐴 = ⨄𝑎∈𝐴 𝛿𝜋(𝑎) 𝑎. We may

therefore use the 𝜋𝐴 as abbreviations in terms.

Proposition 7.22. Let 𝑡 ∶ 𝐴 → 𝐵 be a term of a nominal monoidal theory. The equations

in fig. 7.7 and fig. 7.8 entail that 𝜋 ⋅ 𝑡 = 𝜋−1𝐴 ; 𝑡 ; 𝜋𝐵 .

𝐴 𝑡
//

𝜋𝐴
��

𝐵
𝜋𝐵
��

𝜋[𝐴] 𝜋⋅𝑡
// 𝜋[𝐵]

86

Proof. By induction on 𝑡:

• 𝑡 = id𝑎 W.l.o.g. we can assume we have the following two cases. Either 𝜋 = (𝑎 𝑥)
or 𝜋 = (𝑥 𝑦):

– If 𝜋 = (𝑎 𝑥), then
(𝑎 𝑥)id𝑎 = id𝑥 = 𝛿𝑥𝑥 = 𝛿𝑥𝑎 ; 𝛿𝑎𝑥 = 𝛿𝑥𝑎 ; id𝑎 ; 𝛿𝑎𝑥 = 𝜋

−1
{𝑎} ; id𝑎 ; 𝜋{𝑎}

– If 𝜋 = (𝑥 𝑦), then
(𝑥 𝑦)id𝑎 = id𝑎 = id𝑎 ; id𝑎 ; id𝑎 = 𝛿𝑎𝑎 ; id𝑎 ; 𝛿𝑎𝑎 = 𝜋

−1
{𝑎} ; 𝑖𝑑𝑎 ; 𝜋{𝑎}

• 𝑡 = 𝛿𝑎𝑏 W.l.o.g. we can assume the following five cases for 𝜋:

𝜋 = (𝑎 𝑥) or 𝜋 = (𝑏 𝑥) or 𝜋 = (𝑎 𝑥)(𝑏 𝑦) or 𝜋 = (𝑎 𝑏) or 𝜋 = (𝑥 𝑦)

– If 𝜋 = (𝑎 𝑥), then
(𝑎 𝑥)𝛿𝑎𝑏 = 𝛿𝑥𝑏 = 𝛿𝑥𝑎 ; 𝛿𝑎𝑏 = 𝛿𝑥𝑎 ; 𝛿𝑎𝑏 ; 𝛿𝑏𝑏 = 𝜋

−1
{𝑎} ; 𝛿𝑎𝑏 ; 𝜋{𝑏}

– If 𝜋 = (𝑏 𝑥), then
(𝑏 𝑥)𝛿𝑎𝑏 = 𝛿𝑎𝑥 = 𝛿𝑎𝑏 ; 𝛿𝑏𝑥 = 𝛿𝑎𝑎 ; 𝛿𝑎𝑏 ; 𝛿𝑏𝑥 = 𝜋

−1
{𝑎} ; 𝛿𝑎𝑏 ; 𝜋{𝑏}

– If 𝜋 = (𝑎 𝑥)(𝑏 𝑦), then
(𝑎 𝑥)(𝑏 𝑦)𝛿𝑎𝑏 = 𝛿𝑥𝑦 = 𝛿𝑥𝑏 ; 𝛿𝑏𝑦 = 𝛿𝑥𝑎 ; 𝛿𝑎𝑏 ; 𝛿𝑏𝑦 = 𝜋

−1
{𝑎} ; 𝛿𝑎𝑏 ; 𝜋{𝑏}

– If 𝜋 = (𝑎 𝑏), then
(𝑎 𝑏)𝛿𝑎𝑏 = 𝛿𝑏𝑎 = id𝑏 ; 𝛿𝑏𝑎 = 𝛿𝑏𝑏 ; 𝛿𝑏𝑎 = 𝛿𝑏𝑎 ; 𝛿𝑎𝑏 ; 𝛿𝑏𝑎 = 𝜋

−1
{𝑎} ; 𝛿𝑎𝑏 ; 𝜋{𝑏}

– If 𝜋 = (𝑥 𝑦), then
(𝑥 𝑦)𝛿𝑎𝑏 = 𝛿𝑎𝑏 = 𝛿𝑎𝑎 ; 𝛿𝑎𝑏 ; 𝛿𝑏𝑏 = 𝜋

−1
{𝑎} ; 𝛿𝑎𝑏 ; 𝜋{𝑏}

• 𝑡 = [𝒂⟩𝛾⟨𝒃] The equality 𝜋 ⋅ 𝑡 = (𝜋𝐴)
−1 ; 𝑡 ; 𝜋𝐵 follows straightforwardly from

repeated application of (NMT-left) and (NMT-right). The only problematic case

arises in the case 𝜋 = (𝑥 𝑦) and 𝑡 = [𝑎1, … , 𝑥, … , 𝑦, … 𝑎𝑛⟩𝛾⟨𝒃] (there is a symmetric
case with 𝑥, 𝑦 on the right, which proceeds in exactly the same fashion):

y
γ =

x
x y

y
γ

x
yx =

y
γ

x
x # =

y
γx # =

y
γx

In the diagrams above, # is a fresh variable that does not appear in 𝑡.

• 𝑡 = 𝑠 ⊎ 𝑠′ By IH we have 𝜋 ⋅ 𝑠 = 𝜋−1𝐴 ; 𝑠 ; 𝜋𝐵 and 𝜋 ⋅ 𝑠
′ = 𝜋−1𝐴′ ; 𝑠 ; 𝜋𝐵′ . We thus

87

have:

𝜋 ⋅ (𝑠 ⊎ 𝑠′) = 𝜋 ⋅ 𝑠 ⊎ 𝜋 ⋅ 𝑠′

= (𝜋−1𝐴 ; 𝑠 ; 𝜋𝐵) ⊎ (𝜋
−1
𝐴′ ; 𝑠

′ ; 𝜋𝐵′)

= (𝜋−1𝐴 ⊎ 𝜋−1𝐴′) ; ((𝑠 ; 𝜋𝐵) ⊎ (; 𝑠
′ ; 𝜋𝐵′))

= (𝜋−1𝐴 ⊎ 𝜋−1𝐴′) ; (𝑠 ⊎ 𝑠
′) ; (𝜋𝐵 ⊎ 𝜋𝐵′)

= 𝜋−1𝐴⊎𝐴′ ; (𝑠 ⊎ 𝑠
′) ; 𝜋𝐵⊎𝐵′

• 𝑡 = 𝑢 ; 𝑣 Again, we have 𝜋 ⋅ 𝑢 = 𝜋−1𝐴 ; 𝑢 ; 𝜋𝐵 and 𝜋 ⋅ 𝑣 = 𝜋
−1
𝐵 ; 𝑣 ; 𝜋𝐶 by IH. Then:

𝜋 ⋅ (𝑢 ; 𝑣) = 𝜋 ⋅ 𝑢 ; 𝜋 ⋅ 𝑣

= 𝜋−1𝐴 ; 𝑢 ; 𝜋𝐵 ; 𝜋
−1
𝐵 ; 𝑣 ; 𝜋𝐶

= 𝜋−1𝐴 ; 𝑢 ; id𝐵 ; 𝑣 ; 𝜋𝐶
= 𝜋−1𝐴 ; 𝑢 ; 𝑣 ; 𝜋𝐶

Where 𝜋𝐵 ; 𝜋
−1
𝐵 = id𝐵 follows from unpacking the definition of 𝜋 and 𝜋−1.

Corollary 7.23. Let 𝑡 ∶ 𝐴 → 𝐵 be a term of a nominal monoidal theory. Modulo the

equations of fig. 7.7 and fig. 7.8, the support of 𝑡 is 𝐴 ∪ 𝐵.

Proof. It follows from the proposition that supp 𝑡 ⊆ 𝐴 ∪ 𝐵. For the converse, suppose
that there is 𝑥 ∈ 𝐴 ∪ 𝐵 and a support 𝑆 of 𝑡 with 𝑥 ∉ 𝑆 ⊆ 𝐴 ∪ 𝐵. Choose a permutation
𝜋 that fixes 𝑆 and maps 𝑥 to some 𝜋(𝑥) ∉ 𝐴 ∪ 𝐵. Then either 𝜋 ⋅ 𝐴 ≠ 𝐴 or 𝜋 ⋅ 𝐵 ≠ 𝐵,
hence 𝜋 ⋅ 𝑡 ≠ 𝑡, contradicting that 𝑆 is a support of 𝑡.

The last corollary shows that internal names are bound by sequential composition. Indeed,

in a composition 𝐴 𝑡→ 𝐶 𝑠→ 𝐵, the names in 𝐶\(𝐴 ∪ 𝐵) do not appear in the support of 𝑡 ; 𝑠.

7.4.3 Nominal PROPs

From the point of view of sec. 7.2, a nominal PROP, or nPROP
:::::

for short, is an internal strict

monoidal category in (Nom
::::

, 1, ∗) that has finite sets of names as objects and at least all
bijections as arrows. A functor between nPROP

:::::
s is an internal functor that preserves objects

and bijections. We spell this out in detail.

Definition 7.24. An nPROP
:::::

(ℂ, ⊎, 𝕀) is a strict monoidal category internal in Nom
::::

, with

a set ℂ0 of ‘objects’ and a set ℂ1 of ‘arrows’, defined as follows. We write ; for the ‘se-
quential’ composition (in the diagrammatic order) and ⊎ for the ‘parallel’ or ‘monoidal’

88

composition.

• ℂ is a category internal in Nom
::::

. That means:

– ℂ0 is the (nominal) set of finite subsets of names N. The support of a set
of names 𝐴 is the set itself: supp 𝐴 = 𝐴. The permutation action is given
by 𝜋 ⋅ 𝐴 = 𝜋[𝐴] = {𝜋(𝑎) ∣ 𝑎 ∈ 𝐴}.

– ℂ1 contains at least all bijections (‘renamings’) 𝜋𝐴 ∶ 𝐴 → 𝜋 ⋅ 𝐴 for all finite
permutations 𝜋 ∶ N → N and is closed under the operation mapping an
arrow 𝑓 ∶ 𝐴 → 𝐵 to 𝜋 ⋅ 𝑓 ∶ 𝜋 ⋅ 𝐴 → 𝜋 ⋅ 𝐵 defined as 𝜋 ⋅ 𝑓 = (𝜋𝐴)

−1;𝑓;𝜋𝐵 .
Such functions are referred to as finitely supported functions.

– dom, cod have the obvious definitions, taking 𝑓 ∶ 𝐴 → 𝐵 to 𝐴 and 𝐵
respectively and 𝑖(𝐴) = id𝐴.

• ℂ ●∗ ℂ is the separated-product-category internal in Nom
::::

, where:

– (ℂ ●∗ ℂ)0 is the separated product on objects ℂ0 ∗ ℂ0 = {(𝐴, 𝐵) ∈ 𝐶0 × 𝐶0 ∣
supp 𝐴 ∩ supp 𝐵 = ∅}. The permutation action is given by 𝜋 ⋅ (𝐴, 𝐵) =
(𝜋 ⋅ 𝐴, 𝜋 ⋅ 𝐵).

– (ℂ ●∗ ℂ)1 = {(𝑓, 𝑔) ∈ 𝐶1 × 𝐶1 ∣ supp(dom 𝑓) ∩ supp(dom 𝑔) = ∅ =
supp(cod 𝑓) ∩ supp(cod 𝑔)} is the subset of the cartesian product

ℂ1 × ℂ1 containing functions with disjoint support for their domains and
co-domains.

– dom, cod are defined point-wise, i.e. dom(𝑓, 𝑔) = (dom 𝑓, dom 𝑔) and
𝑖(𝐴, 𝐵) = (id𝐴, id𝐵).

• ⊎ ∶ ℂ ●∗ ℂ → ℂ is an internal functor in Nom
::::

, defined on objects 𝐴 ⊎ 𝐵 = 𝐴 ∪ 𝐵
and arrows 𝑓 ⊎1 𝑔 = 𝑓 ∪ 𝑔.

• 𝕀 ∶ 𝐶0 is the unit to ⊎ and is defined as the empty set ∅.

Proof. To show that ℂ is indeed an internal category, we have to check it satisfies def. B.1.
However, we first further define:

• ℂ2 as {(𝑓, 𝑔) ∣ cod 𝑓 = dom 𝑔} and 𝜋1, 𝜋2 as the obvious projections (these are
different from the permutation action 𝜋 defined earlier).

• comp ∶ ℂ2 → ℂ1 is the usual function composition comp(𝑓, 𝑔) = 𝑓 ; 𝑔 (usually
written as 𝑔 ⚬ 𝑓).

• ℂ3 = {(𝑓, 𝑔, ℎ) ∣ cod 𝑓 = dom 𝑔 ∧ cod 𝑔 = dom ℎ} where left(𝑓, 𝑔, ℎ) = (𝑓, 𝑔) and
right(𝑓, 𝑔, ℎ) = (𝑔, ℎ).

• compl, compr ∶ ℂ3 → ℂ2 where compl(𝑓, 𝑔, ℎ) = (𝑓 ; 𝑔, ℎ) and compr(𝑓, 𝑔, ℎ) =
(𝑓, 𝑔 ; ℎ)

89

Then, according to def. B.1, we need to show:

1) Since ℂ2 is defined as a pullback, the diagram

ℂ2
𝜋2 //

𝜋1
��

ℂ1
dom
��

ℂ1
cod

// ℂ0

commutes

by definition.

2) For any (𝑓, 𝑔) ∈ ℂ2 we have

dom ⚬ comp(𝑓, 𝑔) = dom(𝑓 ; 𝑔) = dom 𝑓 = dom(𝜋1(𝑓, 𝑔)) = dom ⚬ 𝜋1(𝑓, 𝑔)

and showing cod ⚬ comp = cod ⚬ 𝜋2 follows in exactly the same manner.
3) We have for all 𝐴 ∈ ℂ0,

dom ⚬ 𝑖(𝐴) = dom(𝑖(𝐴)) = dom id𝐴 = 𝐴 = id𝐴0 𝐴 = cod id𝑎 = cod(𝑖(𝐴)) = cod ⚬ 𝑖(𝐴)

4) For all 𝑓 ∶ 𝐴 → 𝐵 ∈ ℂ1 we have

comp ⚬ ⟨𝑖 ⚬ dom, idℂ1 ⟩(𝑓) = comp(𝑖 ⚬ dom(𝑓), idℂ1 𝑓) = comp(𝑖(𝐴), 𝑓)

= comp(id𝐴, 𝑓) = id𝐴 ; 𝑓 = 𝑓 = id𝐴1 𝑓 = 𝑓 ; id𝐵 = comp(𝑓, id𝐵) =

comp(𝑓, 𝑖(𝐵)) = comp(idℂ1 𝑓, 𝑖 ⚬ cod(𝑓)) = comp ⚬ ⟨idℂ1 , 𝑖 ⚬ cod⟩(𝑓)

5) Finally, we have

comp ⚬ compl(𝑓, 𝑔, ℎ) = comp(compl(𝑓, 𝑔, ℎ)) = comp(𝑓 ; 𝑔, ℎ)

= (𝑓 ; 𝑔) ; ℎ = 𝑓 ; (𝑔 ; ℎ) =

comp(𝑓, 𝑔 ; ℎ) = comp(compr(𝑓, 𝑔, ℎ)) = comp ⚬ compr(𝑓, 𝑔, ℎ)

Next, rather than check that ℂ ●∗ ℂ is also an internal category, we can refer back
to prop. 7.8, which tells us that given an arrow ⊎ ∶ ℂ0 ∗ ℂ0 → ℂ0, we get a lifted
⊎ ∶ ℂ ●∗ ℂ → ℂ, such that ℂ ●∗ ℂ is an internal category and ⊎ is an internal functor.
All we need to check is that our definitions of (ℂ ●∗ ℂ)1 and ⊎1 make the following limit
diagram commute:

(ℂ ●∗ ℂ)1
⊎1 //

dom
��

cod
��

ℂ1
dom

��

cod
��

(ℂ ●∗ ℂ)0 ⊎
// ℂ0

That is, for any 𝑓 ∶ 𝐴 → 𝐵 and 𝑔 ∶ 𝐶 → 𝐷 where supp(dom 𝑓) ∩ supp(dom 𝑔) =
supp(cod 𝑓) ∩ supp(cod 𝑔) = ∅, we have

⊎⚬dom(𝑓, 𝑔) = dom 𝑓 ⊎ dom 𝑔 = 𝐴⊎𝐶 = 𝐴∪𝐶 = dom(𝑓∪𝑔) = dom(𝑓 ⊎1 𝑔) = dom⚬⊎1(𝑓, 𝑔)

90

The case for cod follows in exactly the same manner.

Finally, we have to show that ⊎ is associative

𝑓 ⊎ (𝑔 ⊎ ℎ) = 𝑓 ∪ (𝑔 ∪ ℎ) = (𝑓 ∪ 𝑔) ∪ ℎ = (𝑓 ⊎ 𝑔) ⊎ ℎ

and has 𝕀 as its left and right identity

𝕀 ⊎ 𝑓 = ∅ ∪ 𝑓 = 𝑓 = 𝑓 ∪ ∅ = 𝑓 ⊎ 𝕀

From this definition on can deduce the following.

Remark 7.25.

• A nominal PROP
::::

has a nominal set of objects and a nominal set of arrows.

• The support of an object 𝐴 is 𝐴 and the support of an arrow 𝑓 ∶ 𝐴 → 𝐵 is 𝐴 ∪ 𝐵.
In particular, supp (𝑓;𝑔) = dom 𝑓 ∪ cod 𝑔. In other words, nominal PROP

::::
s have

diagrammatic 𝛼 equivalence.

• There is a category nPROP
:::::

that consists of nominal PROP
::::

s together with functors

that are the identity on objects and strict monoidal and equivariant.

• Every NMT presents a nPROP
:::::

. Conversely, every nPROP
:::::

is presented by at least

one NMT given by all terms as generators and all equations as equations.

7.5 Equivalence of nominal and ordinary PROPs

We show that the categories nPROP
:::::

and PROP
::::

are equivalent.

To define translations between ordinary and nominal monoidal theories we introduce some

auxiliary notation. We denote lists that contain each letter at most once by bold letters. If

𝒂 = [𝑎1, … 𝑎𝑛] is a list, then 𝒂 = {𝑎1, … 𝑎𝑛}. Given lists 𝒂 and 𝒂
′ with 𝒂 = 𝒂′ we abbreviate

bijections in PROP
::::

(also called symmetries), mapping 𝑖 ↦ 𝑗 whenever 𝑎𝑖 = 𝑎′𝑗 , as ⟨𝒂|𝒂
′⟩.

Given lists 𝒂 and 𝒃 of the same length we write [𝒂|𝒃] = ⨄ 𝛿𝑎𝑖𝑏𝑖 for the bijection 𝑎𝑖 ↦ 𝑏𝑖 in
an nPROP

:::::
.

Proposition 7.26. For any PROP
::::

S, there is an nPROP
:::::

NOM
::::

(S)

that has for all arrows 𝑓 ∶ 𝑛 → 𝑚 of S, and for all lists 𝒂 = [𝑎1, … 𝑎𝑛] and 𝒃 = [𝑏1, … 𝑏𝑚]

91

arrows [𝒂⟩𝑓⟨𝒃] ∈ NOM
::::

(S). These arrows are subject to the following equations:

[𝒂⟩𝑓 ; 𝑔⟨𝒄] = [𝒂⟩𝑓⟨𝒃] ; [𝒃⟩𝑔⟨𝒄] (NOM-1)

[𝒂 ++ 𝒄⟩𝑓 +○ 𝑔⟨𝒃 ++ 𝒅] = [𝒂⟩𝑓⟨𝒃] ⊎ [𝒄⟩𝑔⟨𝒅] (NOM-2)

[𝒂⟩id⟨𝒃] = [𝒂|𝒃] (NOM-3)

[𝒂⟩ ⟨𝒃|𝒃′⟩ ; 𝑓 ⟨𝒄] = [𝒂|𝒃] ; [𝒃′⟩𝑓⟨𝒄] (NOM-4)

[𝒂⟩ 𝑓 ; ⟨𝒃|𝒃′⟩ ⟨𝒄] = [𝒂⟩𝑓⟨𝒃] ; [𝒃′|𝒄] (NOM-5)

Proof. To show that NOM
::::

(S) is well-defined, we need to check that the equations of
S are respected. We only have space here for the most interesting case which is the

naturality of symmetries given by the last equation in fig. 7.2. We write 𝒂𝑚 for a list of

𝑎’s of length 𝑚.

[𝒂𝑚 ++ 𝒂𝑧⟩ (𝑡 +○ 𝑖𝑑𝑧) ; 𝜎𝑛,𝑧 ⟨𝒃
𝑧 ++ 𝒃𝑛]

= ([𝒂𝑚⟩ 𝑡 ⟨𝒙𝑛] ⊎ [𝒂𝑧⟩ 𝑖𝑑𝑧 ⟨𝒙
𝑧]) ; [𝒙𝑛 ++ 𝒙𝑧⟩ 𝜎𝑛,𝑧 ⟨𝒃

𝑧 ++ 𝒃𝑛] (NOM-1,2)

= ([𝒂𝑧⟩ 𝑖𝑑𝑧 ⟨𝒙
𝑧] ⊎ [𝒂𝑚⟩ 𝑡 ⟨𝒙𝑛]) ; [𝒙𝑛 ++ 𝒙𝑧⟩ 𝜎𝑛,𝑧 ⟨𝒃

𝑧 ++ 𝒃𝑛] (NMT-comm)

= [𝒂𝑧 ++ 𝒂𝑚⟩ 𝑖𝑑𝑧 +○ 𝑡 ⟨𝒙𝑧 ++ 𝒙𝑛] ; [𝒙𝑛 ++ 𝒙𝑧⟩ 𝜎𝑛,𝑧 ⟨𝒃
𝑧 ++ 𝒃𝑛] (NOM-2)

= [𝒂𝑧 ++ 𝒂𝑚⟩ 𝑖𝑑𝑧 +○ 𝑡 ⟨𝒙𝑧 ++ 𝒙𝑛] ; [𝒙𝑛 ++ 𝒙𝑧⟩ ⟨𝒙𝑛 ++ 𝒙𝑧|𝒙𝑧 ++ 𝒙𝑛⟩ ⟨𝒃𝑧 ++ 𝒃𝑛] (𝜎-def)

= [𝒂𝑧 ++ 𝒂𝑚⟩ 𝑖𝑑𝑧 +○ 𝑡 ⟨𝒙𝑧 ++ 𝒙𝑛] ; [𝒙𝑛 ++ 𝒙𝑧|𝒙𝑛 ++ 𝒙𝑧] ; [𝒙𝑧 ++ 𝒙𝑛|𝒃𝑧 ++ 𝒃𝑛] (41-2)

= [𝒂𝑧 ++ 𝒂𝑚⟩ 𝑖𝑑𝑧 +○ 𝑡 ⟨𝒙𝑧 ++ 𝒙𝑛] ; [𝒙𝑧 ++ 𝒙𝑛|𝒃𝑧 ++ 𝒃𝑛] (𝛿𝑎𝑎 = 𝑖𝑑𝑎)

= [𝒂𝑧 ++ 𝒂𝑚⟩ 𝑖𝑑𝑧 +○ 𝑡 ⟨𝒃𝑧 ++ 𝒃𝑛] (NOM-5)

= [𝒂𝑚 ++ 𝒂𝑧|𝒂𝑚 ++ 𝒂𝑧] ; [𝒂𝑧 ++ 𝒂𝑚⟩ 𝑖𝑑𝑧 +○ 𝑡 ⟨𝒃𝑧 ++ 𝒃𝑛] (𝛿𝑎𝑎 = 𝑖𝑑𝑎)

= [𝒂𝑚 ++ 𝒂𝑧⟩ ⟨𝒂𝑚 ++ 𝒂𝑧|𝒂𝑧 ++ 𝒂𝑚⟩ ; (𝑖𝑑𝑧 +○ 𝑡) ⟨𝒃𝑧 ++ 𝒃𝑛] (NOM-4)

= [𝒂𝑚 ++ 𝒂𝑧⟩ 𝜎𝑚,𝑧 ; (𝑖𝑑𝑧 +○ 𝑡) ⟨𝒃𝑧 ++ 𝒃𝑛] (𝜎-def)

Note how commutativity of ⊎ is used to show that naturality of symmetries is respected.

Example 7.27. n𝔽
::

is isomorphic to NOM
::::

(𝔽
:
).

Proof. We define a map 𝐺 ∶ NOM
::::

(𝔽
:
) → n𝔽

::
as

𝐺([𝒂⟩𝑓⟨𝒃]) = [[𝒂⟩⟩𝑓⟨⟨𝒃]] where 𝑓 ∶ 𝑛 → 𝑚

The semantic brackets [[−⟩⟩ − ⟨⟨−]] translate the arrow 𝑓 ∈ 𝔽
:
into an arrow in n𝔽

::
by pre-

composing with �⃗� ∶ 𝐴 → 𝑛 and post-composing with �⃗�−1 ∶ 𝑚 → 𝐵, where �⃗� is a

92

bijection between the underlying set of 𝒂 and 𝑛, given by the ordering of the list 𝒂.
Therefore, we have [[𝒂⟩⟩𝑓⟨⟨𝒃]] def= �⃗� ; 𝑓 ; �⃗�−1.

𝐺 is defined on the free nPROP
:::::

generated by {[𝒂⟩𝑓⟨𝒃] ∣ 𝑓 ∈ 𝔽
:
}. In particular, 𝐺 is a

homomorphism:

𝐺([𝒂|𝒃]) = [𝒂|𝒃]

𝐺(𝑓 ; 𝑔) = 𝐺(𝑓) ; 𝐺(𝑔)

𝐺(𝑓 ⊎ 𝑔) = 𝐺(𝑓) ⊎ 𝐺(𝑔)

We show 𝐺 is well defined, that is, it respects the equations of NOM
::::

, namely 𝑓 = 𝑔 in
NOM
::::

(𝔽
:
) implies 𝐺(𝑓) = 𝐺(𝑔) in n𝔽

::
:

𝐺([𝒂⟩𝑓 ; 𝑔⟨𝒄]) = [[𝒂⟩⟩𝑓 ; 𝑔⟨⟨𝒄]]

= �⃗� ; 𝑓 ; 𝑔 ; ⃗𝒄−1

= �⃗� ; 𝑓 ; �⃗�−1 ; �⃗� ; 𝑔 ; ⃗𝒄−1

= [[𝒂⟩⟩𝑓⟨⟨𝒃]] ; [[𝒃⟩⟩𝑔⟨⟨𝒄]]

= 𝐺([𝒂⟩𝑓⟨𝒃]) ; 𝐺([𝒃⟩𝑔⟨𝒄])

= 𝐺([𝒂⟩𝑓⟨𝒃] ; [𝒃⟩𝑔⟨𝒄])

𝐺([𝒂 ++ 𝒄⟩𝑓 +○ 𝑔⟨𝒃 ++ 𝒅]) = [[𝒂 ++ 𝒄⟩⟩𝑓 +○ 𝑔⟨⟨𝒃 ++ 𝒅]]

= ⃗𝒂 ++ 𝒄 ; (𝑓 +○ 𝑔) ; ⃗𝒃 ++ 𝒅−1

= (�⃗� ; 𝑓 ; �⃗�−1) ⊎ (⃗𝒄 ; 𝑔 ; ⃗𝒅−1)

= [[𝒂⟩⟩𝑓⟨⟨𝒃]] ⊎ [[𝒄⟩⟩𝑔⟨⟨𝒅]]

= 𝐺([𝒂⟩𝑓⟨𝒃]) ⊎ 𝐺([𝒄⟩𝑔⟨𝒅])

= 𝐺([𝒂⟩𝑓⟨𝒃] ⊎ [𝒄⟩𝑔⟨𝒅])

We justify the third equation in the above proof

⃗𝒂 ++ 𝒄 ; 𝑓 +○ 𝑔 ; ⃗𝒃 ++ 𝒅−1 = (�⃗� ; 𝑓 ; �⃗�−1) ⊎ (⃗𝒄 ; 𝑔 ; ⃗𝒅−1)

where 𝑓 ∶ 𝑛 → 𝑚, 𝑔 ∶ 𝑜 → 𝑝 and |𝒂| = 𝑛, |𝒄| = 𝑜, |𝒃| = 𝑚, |𝒅| = 𝑝, with the following
argument. Recall that 𝑓 ⊎ 𝑔 is just the set union of the two functions 𝑓 ∪ 𝑔 and that

93

𝑓 +○ 𝑔 is defined for 𝑓 ∶ 𝑛 → 𝑚 and 𝑔 ∶ 𝑜 → 𝑝 in the following way:

𝑓 +○ 𝑔 (𝑘) = {
𝑓(𝑘) if 𝑘 ≤ 𝑛

𝑔(𝑘 − 𝑛) + 𝑚 otherwise

Its also easy enough to see that we have:

⃗𝒂 ++ 𝒃 (𝑥) = {
�⃗�(𝑥) if 𝑥 ∈ 𝑠𝑒𝑡(𝒂)

�⃗�(𝑥) + |𝒂| otherwise
⃗𝒂 ++ 𝒃−1(𝑘) = {

�⃗�−1(𝑘) if 𝑘 ≤ |𝒂|

�⃗�−1(𝑘 − |𝒂|) otherwise

Then, given an 𝑥 we have two cases:

• 𝑥 ∈ 𝑠𝑒𝑡(𝒂). Then we have:

⃗𝒂 ++ 𝒄 ; 𝑓 +○ 𝑔 ; ⃗𝒃 ++ 𝒅−1(𝑥) = 𝑓 +○ 𝑔 ; ⃗𝒃 ++ 𝒅−1(⃗𝒂 ++ 𝒄 (𝑥))

= 𝑓 +○ 𝑔 ; ⃗𝒃 ++ 𝒅−1(�⃗�(𝑥))

= ⃗𝒃 ++ 𝒅−1(𝑓 +○ 𝑔 (�⃗�(𝑥)))

= ⃗𝒃 ++ 𝒅−1(𝑓(�⃗�(𝑥)))

= �⃗�−1(𝑓(�⃗�(𝑥)))

= �⃗� ; 𝑓 ; �⃗�−1(𝑥)

• 𝑥 ∈ 𝑠𝑒𝑡(𝒄). Then we have:

⃗𝒂 ++ 𝒄 ; 𝑓 +○ 𝑔 ; ⃗𝒃 ++ 𝒅−1(𝑥) = 𝑓 +○ 𝑔 ; ⃗𝒃 ++ 𝒅−1(⃗𝒂 ++ 𝒄 (𝑥))

= 𝑓 +○ 𝑔 ; ⃗𝒃 ++ 𝒅−1(⃗𝒄(𝑥) + |𝒂|)

= ⃗𝒃 ++ 𝒅−1(𝑓 +○ 𝑔 (⃗𝒄(𝑥) + |𝒂|))

= ⃗𝒃 ++ 𝒅−1(𝑔(⃗𝒄(𝑥) + |𝒂| − |𝒂|) + |𝒃|)

= ⃗𝒅−1(𝑔(⃗𝒄(𝑥)) + |𝒃| − |𝒃|)

= ⃗𝒄 ; 𝑓 ; ⃗𝒅−1(𝑥)

Thus we can conclude that

⃗𝒂 ++ 𝒄 ; 𝑓 +○ 𝑔 ; ⃗𝒃 ++ 𝒅−1(𝑥) = (�⃗� ; 𝑓 ; �⃗�−1) ∪ (⃗𝒄 ; 𝑔 ; ⃗𝒅−1)(𝑥)

for any 𝑥, from which the original proposition follows.

Having shown

𝐺([𝒂 ++ 𝒄⟩𝑓 +○ 𝑔⟨𝒃 ++ 𝒅]) = [[𝒂 ++ 𝒄⟩⟩𝑓 +○ 𝑔⟨⟨𝒃 ++ 𝒅]] = 𝐺([𝒂⟩𝑓⟨𝒃] ⊎ [𝒄⟩𝑔⟨𝒅])

94

we have to show that the last three equations in NOM
::::

are respected by 𝐺:

𝐺([𝒂⟩𝑖𝑑⟨𝒃]) = [[𝒂⟩⟩𝑖𝑑⟨⟨𝒃]] = �⃗� ; 𝑖𝑑 ; �⃗�−1 = [𝒂|𝒃] = 𝐺([𝒂|𝒃])

𝐺([𝒂⟩⟨𝒃|𝒃′⟩ ; 𝑓⟨𝒄]) = [[𝒂⟩⟩⟨𝒃|𝒃′⟩ ; 𝑓⟨⟨𝒄]]

= �⃗� ; ⟨𝒃|𝒃′⟩ ; 𝑓 ; ⃗𝒄−1

= �⃗� ; �⃗�−1 ; ⃗𝒃′ ; 𝑓 ; ⃗𝒄−1

= [𝒂|𝒃] ; ⃗𝒃′ ; 𝑓 ; ⃗𝒄−1

= [𝒂|𝒃] ; [[𝒃′⟩⟩𝑓⟨⟨𝒄]]

= 𝐺([𝒂|𝒃]) ; 𝐺([𝒃′⟩𝑓⟨𝒄])

= 𝐺([𝒂|𝒃] ; [𝒃′⟩𝑓⟨𝒄])

This concludes the proof that 𝐺 is a well defined function.

Now we define the map 𝐻 ∶ n𝔽
::

→ NOM
::::

(𝔽
:
) as

𝐻(𝑓) = [𝒂⟩⟨⟨𝒂]]𝑓[[𝒃⟩⟩⟨𝒃]

for 𝑓 ∶ 𝐴 → 𝐵 and 𝒂, 𝒃 s.t. 𝑠𝑒𝑡(𝒂) = 𝐴 and 𝑠𝑒𝑡(𝒃) = 𝐵.

Similarly to 𝐺, the semantic brackets ⟨⟨−]] − [[−⟩⟩ translate the arrow 𝑓 ∈ n𝔽
::
into an arrow

in 𝔽
:
, defined as ⟨⟨𝒂]]𝑓[[𝒃⟩⟩ def= �⃗�−1 ; 𝑓 ; �⃗�.

We show that 𝐻 is a homomorphism:

For 𝑓 ∶ 𝐴 → 𝐵 and 𝑔 ∶ 𝐵 → 𝐶, we have:

𝐻(𝑓 ; 𝑔) = [𝒂⟩⟨⟨𝒂]]𝑓 ; 𝑔[[𝒄⟩⟩⟨𝒄]

= [𝒂⟩�⃗�−1 ; 𝑓 ; 𝑔 ; ⃗𝒄⟨𝒄]

= [𝒂⟩�⃗�−1 ; 𝑓 ; �⃗� ; �⃗�−1 ; 𝑔 ; ⃗𝒄⟨𝒄]

= [𝒂⟩�⃗�−1 ; 𝑓 ; �⃗�⟨𝒃] ; [𝒃⟩�⃗�−1 ; 𝑔 ; ⃗𝒄⟨𝒄]

= [𝒂⟩⟨⟨𝒂]]𝑓[[𝒃⟩⟩⟨𝒃] ; [𝒃⟩⟨⟨𝒃]]𝑔[[𝒄⟩⟩⟨𝒄]

= 𝐻(𝑓) ; 𝐻(𝑔)

95

For 𝑓 ∶ 𝐴 → 𝐵, 𝑔 ∶ 𝐶 → 𝐷, 𝑋 = 𝐴 ∪ 𝐶 and 𝑌 = 𝐵 ∪ 𝐷 we have:

𝐻(𝑓 ⊎ 𝑔) = [𝐱⟩⟨⟨𝐱]]𝑓 ⊎ 𝑔[[𝐲⟩⟩⟨𝐲]

= [𝐱⟩�⃗�−1 ; (𝑓 ⊎ 𝑔) ; �⃗�⟨𝐲]

= [𝐱⟩�⃗�−1 ; (�⃗� ⊎ ⃗𝒄) ; (�⃗�−1 ⊎ ⃗𝒄−1) ; (𝑓 ⊎ 𝑔) ; (�⃗� ⊎ ⃗𝒅) ; (�⃗�−1 ⊎ ⃗𝒅−1) ; �⃗�⟨𝐲]

= [𝐱⟩�⃗�−1 ; (�⃗� ⊎ ⃗𝒄) ; ((�⃗�−1 ; 𝑓 ; �⃗�) ⊎ (⃗𝒄−1 ; 𝑔 ; ⃗𝒅)) ; (�⃗�−1 ⊎ ⃗𝒅−1) ; �⃗�⟨𝐲]

= [𝐱⟩⟨𝐱|𝒂 ++ 𝒄⟩ ; ((�⃗�−1 ; 𝑓 ; �⃗�) ⊎ (⃗𝒄−1 ; 𝑔 ; ⃗𝒅)) ; ⟨𝒃 ++ 𝒅|𝐲⟩⟨𝐲]

= [𝒂 ++ 𝒄⟩(�⃗�−1 ; 𝑓 ; �⃗�) ⊎ (⃗𝒄−1 ; 𝑔 ; ⃗𝒅)⟨𝒃 ++ 𝒅]

= [𝒂 ++ 𝒄⟩⟨⟨𝒂]]𝑓[[𝒃⟩⟩ ⊎ ⟨⟨𝒄]]𝑔[[𝒅⟩⟩⟨𝒃 ++ 𝒅]

= [𝒂⟩⟨⟨𝒂]]𝑓[[𝒃⟩⟩⟨𝒃] ⊎ [𝒄⟩⟨⟨𝒄]]𝑔[[𝒅⟩⟩⟨𝒅]

= 𝐻(𝑓) ⊎ 𝐻(𝑔)

𝐻([𝒂|𝒃]) = [𝒂′⟩⟨⟨𝒂′]][𝒂|𝒃][[𝒃′⟩⟩⟨𝒃′]

= [𝒂′⟩ ⃗𝒂′−1 ; [𝒂|𝒃] ; ⃗𝒃′ ⟨𝒃′]

= [𝒂′⟩ ⃗𝒂′−1 ; �⃗� ; �⃗�−1 ; ⃗𝒃′ ⟨𝒃′]

= [𝒂′⟩⟨𝒂′|𝒂⟩ ; ⟨𝒃|𝒃′⟩⟨𝒃′]

= [𝒂⟩𝑖𝑑⟨𝒃] = [𝒂|𝒃]

Having shown 𝐻 is a homomorphism, we finally show that 𝐺 and 𝐻 are isomorphisms.

𝐺 ⚬ 𝐻 (𝑓) = 𝐺([𝒂⟩⟨⟨𝒂]]𝑓[[𝒃⟩⟩⟨𝒃]) = [[𝒂⟩⟩⟨⟨𝒂]]𝑓[[𝒃⟩⟩⟨⟨𝒃]] = �⃗� ; �⃗�−1 ; 𝑓 ; �⃗�−1 ; �⃗� = 𝑓

𝐻 ⚬ 𝐺 ([𝒂⟩𝑓⟨𝒃]) = 𝐻([[𝒂⟩⟩𝑓⟨⟨𝒃]])

= [𝒂′⟩⟨⟨𝒂′]][[𝒂⟩⟩𝑓⟨⟨𝒃]][[𝒃′⟩⟩⟨𝒃′]

= [𝒂′⟩⟨𝒂′|𝒂⟩ ; 𝑓 ; ⟨𝒃|𝒃′⟩⟨𝒃′] = [𝒂⟩𝑓⟨𝒃]

Remark 7.28. The argument in the example above can easily be adapted to the cate-
gories of injections n𝕀, surjections n𝕊, bijections n𝔹, partial functions nℙ and relations
nℝ, being isomorphic to NOM

::::
(𝕀), NOM

::::
(𝕊), NOM

::::
(𝔹), etc. The same construction works

in all the other instances, since the equational reasoning above only requires bijective

arrows/functions to be present in a given category.

96

Proposition 7.29. For any nPROP
:::::

T there is a PROP
::::

ORD
:::

(T)

that has for all arrows 𝑓 ∶ 𝐴 → 𝐵 of T, and for all lists 𝒂 = [𝑎1, … 𝑎𝑛] and 𝒃 = [𝑏1, … 𝑏𝑚]
arrows ⟨𝒂]𝑓[𝒃⟩. These arrows are subject to the equations below:

⟨𝒂] 𝑓 ; 𝑔 [𝒄⟩ = ⟨𝒂] 𝑓 [𝒃⟩ ; ⟨𝒃] 𝑔 [𝒄⟩ (ORD-1)

⟨𝒂𝑓 ++ 𝒂𝑔] 𝑓 ⊎ 𝑔 [𝒃𝑓 ++ 𝒃𝑔⟩ = ⟨𝒂𝑓] 𝑓 [𝒃𝑓 ⟩ +○ ⟨𝒂𝑔] 𝑔 [𝒃𝑔⟩ (ORD-2)

⟨𝒂] id [𝒂⟩ = id (ORD-3)

⟨𝒂] [𝒂′|𝒃] ; 𝑓 [𝒄⟩ = ⟨𝒂|𝒂′⟩ ; ⟨𝒃] 𝑓 [𝒄⟩ (ORD-4)

⟨𝒂] 𝑓 ; [𝒃|𝒄] [𝒄′⟩ = ⟨𝒂] 𝑓 [𝒃⟩ ; ⟨𝒄|𝒄′⟩ (ORD-5)

⟨𝒂] 𝑓 [𝒃⟩ = ⟨𝜋 ⋅ 𝒂] 𝜋 ⋅ 𝑓 [𝜋 ⋅ 𝒃⟩ (ORD-6)

Proof. To show that ORD
:::

is well-defined we need to show that the equations NMT
:::

are

respected. The most interesting case here is the commutativity of ⊎ since the +○ of

SMT
:::

s is not commutative.

⟨𝒂𝑡 ++ 𝒂𝑠] 𝑡 ⊎ 𝑠 [𝒃𝑡 ++ 𝒃𝑠⟩

= ⟨𝒂𝑡] 𝑡 [𝒃𝑡⟩ +○ ⟨𝒂𝑠] 𝑠 [𝒃𝑠⟩ (ORD-2)

= (⟨𝒂𝑡] 𝑡 [𝒃𝑡⟩ ; 𝑖𝑑|𝒃𝑡|) +○ (𝑖𝑑|𝒂𝑠| ; ⟨𝒂𝑠] 𝑠 [𝒃𝑠⟩) (𝑖𝑑 ; 𝑎 = 𝑎 = 𝑎 ; 𝑖𝑑)

= (⟨𝒂𝑡] 𝑡 [𝒃𝑡⟩ +○ 𝑖𝑑|𝒂𝑠|) ; (𝑖𝑑|𝒃𝑡| +○ ⟨𝒂𝑠] 𝑠 [𝒃𝑠⟩) (SMT-ch)

= (⟨𝒂𝑡] 𝑡 [𝒃𝑡⟩ +○ 𝑖𝑑|𝒂𝑠|) ; 𝜎|𝒃𝑡|,|𝒂𝑠| ; 𝜎|𝒂𝑠|,|𝒃𝑡| ; (𝑖𝑑|𝒃𝑡| +○ ⟨𝒂𝑠] 𝑠 [𝒃𝑠⟩) (SMT-sym)

= 𝜎|𝒂𝑡|,|𝒂𝑠| ; (𝑖𝑑|𝒂𝑠| +○ ⟨𝒂𝑡] 𝑡 [𝒃𝑡⟩) ; 𝜎|𝒂𝑠|,|𝒃𝑡| ; (𝑖𝑑|𝒃𝑡| +○ ⟨𝒂𝑠] 𝑠 [𝒃𝑠⟩) (SMT-nat)

= 𝜎|𝒂𝑡|,|𝒂𝑠| ; (𝑖𝑑|𝒂𝑠| +○ ⟨𝒂𝑡] 𝑡 [𝒃𝑡⟩) ; (⟨𝒂𝑠] 𝑠 [𝒃𝑠⟩ +○ 𝑖𝑑|𝒃𝑡|) ; 𝜎|𝒃𝑠|,|𝒃𝑡| (SMT-nat)

= 𝜎|𝒂𝑡|,|𝒂𝑠| ; ((𝑖𝑑|𝒂𝑠| ; ⟨𝒂𝑠] 𝑠 [𝒃𝑠⟩) +○ (⟨𝒂𝑡] 𝑡 [𝒃𝑡⟩ ; 𝑖𝑑|𝒃𝑡|)) ; 𝜎|𝒃𝑠|,|𝒃𝑡| (SMT-ch)

= 𝜎|𝒂𝑡|,|𝒂𝑠| ; ⟨𝒂𝑠 ++ 𝒂𝑡] 𝑠 ⊎ 𝑡 [𝒃𝑠 ++ 𝒃𝑡⟩ ; 𝜎|𝒃𝑠|,|𝒃𝑡| (𝑖𝑑 ; 𝑎 = 𝑎,ORD-2)

= ⟨𝒂𝑡 ++ 𝒂𝑠|𝒂𝑠 ++ 𝒂𝑡⟩ ; ⟨𝒂𝑠 ++ 𝒂𝑡] 𝑠 ⊎ 𝑡 [𝒃𝑠 ++ 𝒃𝑡⟩ ; ⟨𝒃𝑠 ++ 𝒃𝑡|𝒃𝑡 ++ 𝒃𝑠⟩ (𝜎-def)

= ⟨𝒂𝑡 ++ 𝒂𝑠] [𝒂𝑠 ++ 𝒂𝑡|𝒂𝑠 ++ 𝒂𝑡] ; 𝑠 ⊎ 𝑡 ; [𝒃𝑠 ++ 𝒃𝑡|𝒃𝑠 ++ 𝒃𝑡] [𝒃𝑡 ++ 𝒃𝑠⟩ (ORD-4,5)

= ⟨𝒂𝑡 ++ 𝒂𝑠] 𝑠 ⊎ 𝑡 [𝒃𝑡 ++ 𝒃𝑠⟩ (𝛿𝑎𝑎 = 𝑖𝑑𝑎)

Note how naturality of symmetries is used to show that the definition of ORD
:::

respects

commutativity of ⊎.

97

Example 7.30. 𝔽
:
is isomorphic to ORD

:::
(n𝔽
::
).

Proof. We define a map 𝐺 ∶ ORD
:::

(n𝔽
::
) → 𝔽

:
as

𝐺(⟨𝒂]𝑓[𝒃⟩) = ⟨⟨𝒂]]𝑓[[𝒃⟩⟩ where 𝑓 ∶ 𝐴 → 𝐵

𝐺 is defined on the free PROP
::::

generated by {⟨𝒂]𝑓[𝒃⟩ ∣ 𝑓 ∈ n𝔽
::
}. In particular, 𝐺 is a

homomorphism:

𝐺(𝜎) = 𝜎

𝐺(𝑓 ; 𝑔) = 𝐺(𝑓) ; 𝐺(𝑔)

𝐺(𝑓 +○ 𝑔) = 𝐺(𝑓) +○ 𝐺(𝑔)

We show 𝐺 is well defined, that is, it respects the equations of ORD
:::

:

𝐺(⟨𝒂]𝑓 ; 𝑔[𝒄⟩) = ⟨⟨𝒂]]𝑓 ; 𝑔[[𝒄⟩⟩

= �⃗�−1 ; 𝑓 ; 𝑔 ; ⃗𝒄

= �⃗�−1 ; 𝑓 ; �⃗� ; �⃗�−1 ; 𝑔 ; ⃗𝒄

= ⟨⟨𝒂]]𝑓[[𝒃⟩⟩ ; ⟨⟨𝒃]]𝑔[[𝒄⟩⟩

= 𝐺(⟨𝒂]𝑓[𝒃⟩) ; 𝐺(⟨𝒃]𝑔[𝒄⟩)

= 𝐺(⟨𝒂]𝑓[𝒃⟩ ; ⟨𝒃]𝑔[𝒄⟩)

𝐺(⟨𝒂 ++ 𝒄]𝑓 ⊎ 𝑔[𝒃 ++ 𝒅⟩) = [[𝒂 ++ 𝒄⟩⟩𝑓 ⊎ 𝑔⟨⟨𝒃 ++ 𝒅]]

= ⃗𝒂 ++ 𝒄−1 ; (𝑓 ⊎ 𝑔) ; ⃗𝒃 ++ 𝒅

= (�⃗�−1 ; 𝑓 ; �⃗�) +○ (⃗𝒄−1 ; 𝑔 ; ⃗𝒅)

= ⟨⟨𝒂]]𝑓[[𝒃⟩⟩ +○ ⟨⟨𝒄]]𝑔[[𝒅⟩⟩

= 𝐺(⟨𝒂]𝑓[𝒃⟩) +○ 𝐺(⟨𝒄]𝑔[𝒅⟩)

= 𝐺(⟨𝒂]𝑓[𝒃⟩ +○ ⟨𝒄]𝑔[𝒅⟩)

𝐺(⟨𝒂]𝑖𝑑[𝒂⟩) = ⟨⟨𝒂]]𝑖𝑑[[𝒂⟩⟩ = �⃗�−1 ; 𝑖𝑑 ; �⃗� = 𝑖𝑑 = 𝐺(𝑖𝑑)

98

𝐺(⟨𝒂][𝒂′|𝒃] ; 𝑓[𝒄⟩) = ⟨⟨𝒂]][𝒂′|𝒃] ; 𝑓[[𝒄⟩⟩

= �⃗�−1 ; [𝒂′|𝒃] ; 𝑓 ; ⃗𝒄

= �⃗�−1 ; ⃗𝒂′ ; �⃗�−1 ; 𝑓 ; ⃗𝒄

= ⟨𝒂|𝒃⟩ ; �⃗�−1 ; 𝑓 ; ⃗𝒄

= ⟨𝒂|𝒃⟩ ; ⟨⟨𝒃]]𝑓[[𝒄⟩⟩

= 𝐺(⟨𝒂|𝒃⟩) ; 𝐺(⟨𝒃]𝑓[𝒄⟩)

= 𝐺(⟨𝒂|𝒃⟩ ; ⟨𝒃]𝑓[𝒄⟩)

This concludes the proof that 𝐺 is a well defined function.

Now we define the map 𝐻 ∶ n𝔽
::

→ NOM
::::

(𝔽
:
) as

𝐻(𝑓) = ⟨𝒂][[𝒂⟩⟩𝑓⟨⟨𝒃]][𝒃⟩

showing that it is a homomorphism:

𝐻(𝑓 ; 𝑔) = ⟨𝒂][[𝒂⟩⟩𝑓 ; 𝑔⟨⟨𝒄]][𝒄⟩

= ⟨𝒂]�⃗� ; 𝑓 ; 𝑔 ; ⃗𝒄−1[𝒄⟩

= ⟨𝒂]�⃗� ; 𝑓 ; �⃗�−1 ; �⃗� ; 𝑔 ; ⃗𝒄⟨𝒄]

= ⟨𝒂]�⃗� ; 𝑓 ; �⃗�−1[𝒃⟩ ; ⟨𝒃]�⃗� ; 𝑔 ; ⃗𝒄−1[𝒄⟩

= ⟨𝒂][[𝒂⟩⟩𝑓⟨⟨𝒃]][𝒃⟩ ; ⟨𝒃][[𝒃⟩⟩𝑔⟨⟨𝒄]][𝒄⟩

= 𝐻(𝑓) ; 𝐻(𝑔)

99

𝐻(𝑓 +○ 𝑔) = ⟨𝐱][[𝐱⟩⟩𝑓 +○ 𝑔⟨⟨𝐲]][𝐲⟩

= ⟨𝐱]�⃗� ; (𝑓 +○ 𝑔) ; �⃗�−1[𝐲⟩

= ⟨𝐱]�⃗� ; (�⃗�−1 ⊎ ⃗𝒄−1) ; (�⃗� ⊎ ⃗𝒄) ; (𝑓 +○ 𝑔) ; (�⃗�−1 ⊎ ⃗𝒅−1) ; (�⃗� ⊎ ⃗𝒅) ; �⃗�−1[𝐲⟩

= ⟨𝐱]�⃗� ; (�⃗�−1 ⊎ ⃗𝒄−1) ; ((�⃗� ; 𝑓 ; �⃗�−1) +○ (⃗𝒄 ; 𝑔 ; ⃗𝒅−1)) ; (�⃗� ⊎ ⃗𝒅) ; �⃗�⟨𝐲]

= ⟨𝐱][𝐱|𝒂 ++ 𝒄] ; ((�⃗� ; 𝑓 ; �⃗�−1) +○ (⃗𝒄 ; 𝑔 ; ⃗𝒅−1)) ; ⟨𝒃 ++ 𝒅|𝐲⟩⟨𝐲]

= ⟨𝒂 ++ 𝒄](�⃗� ; 𝑓 ; �⃗�−1) +○ (⃗𝒄 ; 𝑔 ; ⃗𝒅−1)[𝒃 ++ 𝒅⟩

= ⟨𝒂 ++ 𝒄][[𝒂⟩⟩𝑓⟨⟨𝒃]] ⊎ [[𝒄⟩⟩𝑔⟨⟨𝒅]][𝒃 ++ 𝒅⟩

= ⟨𝒂][[𝒂⟩⟩𝑓⟨⟨𝒃]][𝒃⟩ ⊎ ⟨𝒄][[𝒄⟩⟩𝑔⟨⟨𝒅]][𝒅⟩

= 𝐻(𝑓) +○ 𝐻(𝑔)

For the identity and 𝜎, it is trivial to see that 𝐻 is a homomorphism.

Having shown 𝐻 is a homomorphism, we now show that 𝐺 and 𝐻 are isomorphisms.

𝐺 ⚬ 𝐻 (𝑓) = 𝐺(⟨𝒂][[𝒂⟩⟩𝑓⟨⟨𝒃]][𝒃⟩) = ⟨⟨𝒂]][[𝒂⟩⟩𝑓⟨⟨𝒃]][[𝒃⟩⟩ = �⃗�−1 ; �⃗� ; 𝑓 ; �⃗� ; �⃗�−1 = 𝑓

𝐻 ⚬ 𝐺 (⟨𝒂]𝑓[𝒃⟩) = 𝐻(⟨⟨𝒂]]𝑓[[𝒃⟩⟩)

= ⟨𝒄][[𝒄⟩⟩⟨⟨𝒂]]𝑓[[𝒃⟩⟩⟨⟨𝒅]][𝒅⟩

= ⟨𝒄][𝒄|𝒂] ; 𝑓 ; [𝒃|𝒅][𝒅⟩ = ⟨𝒂]𝑓[𝒃⟩

Remark 7.31. In a similar vein, we can show that injections 𝕀, surjections 𝕊, bijections
𝔹, partial functions ℙ and relations ℝ, are isomorphic to ORD

:::
(n𝕀), ORD

:::
(n𝕊), ORD

:::
(n𝔹),

etc.

Lemma 7.32. The following equations can be derived from the ones defined in prop. 7.26

and prop. 7.29:

[𝒂⟩ 𝑓 ; ⟨𝒃|𝒃′⟩ ; 𝑔 ⟨𝒄] = [𝒂⟩ 𝑓 ⟨𝒃] ; [𝒃′⟩ 𝑔 ⟨𝒄] (41-1)

[𝒂⟩ ⟨𝒃|𝒃′⟩ ⟨𝒄] = [𝒂|𝒃] ; [𝒃′|𝒄] (41-2)

⟨𝒂] 𝑓 ; [𝒃|𝒄] ; 𝑔 [𝒅⟩ = ⟨𝒂] 𝑓 [𝒃⟩ ; ⟨𝒄] 𝑔 [𝒅⟩ (41-3)

⟨𝒂] [𝒂′|𝒃′] [𝒃⟩ = ⟨𝒂|𝒂′⟩ ; ⟨𝒃′|𝒃⟩ (41-4)

⟨𝒂][𝒂⟩ 𝑓 ⟨𝒃][𝒃⟩ = ⟨𝒄][𝒄⟩ 𝑓 ⟨𝒅][𝒅⟩ (41-5)

100

Proof.

[𝒂⟩𝑓 ; ⟨𝒃|𝒃′⟩ ; 𝑔⟨𝒄] = [𝒂⟩ 𝑓 ; ⟨𝒃|𝒃′⟩ ⟨𝒃′] ; [𝒃′⟩ 𝑔 ⟨𝒄] (NOM-1)

= [𝒂⟩ 𝑓 ⟨𝒃] ; [𝒃′|𝒃′] ; [𝒃′⟩ 𝑔 ⟨𝒄] (NOM-5)

= [𝒂⟩ 𝑓 ⟨𝒃] ; [𝒃′⟩ 𝑔 ⟨𝒄] (𝛿𝑎𝑎 = 𝑖𝑑𝑎)

⟨𝒂] 𝑓 ; [𝒃|𝒄] ; 𝑔 [𝒅⟩ = ⟨𝒂] 𝑓 ; [𝒃|𝒄] [𝒄⟩ ; ⟨𝒄] 𝑔 [𝒅⟩ (ORD-1)

= ⟨𝒂] 𝑓 [𝒃⟩ ; ⟨𝒄|𝒄⟩ ; ⟨𝒄] 𝑔 [𝒅⟩ (ORD-5)

= ⟨𝒂] 𝑓 [𝒃⟩ ; ⟨𝒄] 𝑔 [𝒅⟩

The choice of 𝒂, 𝒃 is arbitrary, because we can prove that for any other choice 𝒄, 𝒅, we
have ⟨𝒂][𝒂⟩ 𝑓 ⟨𝒃][𝒃⟩ = ⟨𝒄][𝒄⟩ 𝑓 ⟨𝒅][𝒅⟩:

⟨𝒂][𝒂⟩ 𝑓 ⟨𝒃][𝒃⟩ = ⟨𝒂]([𝒂⟩⟨𝒄|𝒄⟩ ; 𝑓 ; ⟨𝒅|𝒅⟩ ⟨𝒃])[𝒃⟩ (𝑖𝑑 ; 𝑎 = 𝑎 = 𝑎 ; 𝑖𝑑)

= ⟨𝒂]([𝒂|𝒄] ; [𝒄⟩ 𝑓 ; ⟨𝒅|𝒅⟩ ⟨𝒃])[𝒃⟩ (NOM-4)

= ⟨𝒂|𝒂⟩ ; ⟨𝒄]([𝒄⟩ 𝑓 ; ⟨𝒅|𝒅⟩ ⟨𝒃])[𝒃⟩ (ORD-4)

= ⟨𝒄]([𝒄⟩ 𝑓 ; ⟨𝒅|𝒅⟩ ⟨𝒃])[𝒃⟩ (𝑖𝑑 ; 𝑎 = 𝑎 = 𝑎 ; 𝑖𝑑)

= ⟨𝒄]([𝒄⟩ 𝑓 ⟨𝒅] ; [𝒅|𝒃])[𝒃⟩ (NOM-5)

= ⟨𝒄] [𝒄⟩ 𝑓 ⟨𝒅] [𝒅⟩ ; ⟨𝒃|𝒃⟩ (ORD-5)

= ⟨𝒄][𝒄⟩ 𝑓 ⟨𝒅][𝒅⟩ (𝑖𝑑 ; 𝑎 = 𝑎 = 𝑎 ; 𝑖𝑑)

Remark 7.33. While technically [𝒂⟩ 𝑓 ⟨𝒃] is just an operation symbol, the intended

meaning is that ⟨𝒂] is mapping the index 𝑖 to the name 𝑎𝑖 and that [𝒂⟩ is mapping the
name 𝑎𝑖 to the index 𝑖.

Proposition 7.34. NOM
::::

∶ PROP
::::

→ nPROP
:::::

is a functor mapping an arrow of PROP
::::

s

𝐹 ∶ S → S to an arrow of nPROP
:::::

s NOM
::::

(𝐹) ∶ NOM
::::

(S) → NOM
::::

(S) defined by

NOM
::::

(𝐹)([𝒂⟩ 𝑔 ⟨𝒃]) = [𝒂⟩ 𝐹𝑔 ⟨𝒃]. (NOM-F)

Proof. We need to show that NOM
::::

(𝐹) is equivariant and preserves bijections, sequen-
tial and parallel composition.

101

𝜋 ⋅ NOM
::::

(𝐹)([𝒂⟩𝑓⟨𝒃]) = 𝜋 ⋅ [𝒂⟩𝐹𝑓⟨𝒃] (NOM-F)

= [𝜋(𝒂)⟩𝐹𝑓⟨𝜋(𝒃)] (𝜋-def)

= NOM
::::

(𝐹)([𝜋(𝒂)⟩𝑓⟨𝜋(𝒃)]) (NOM-F)

= NOM
::::

(𝐹)(𝜋 ⋅ [𝒂⟩𝑓⟨𝒃]) (𝜋-def)

NOM
::::

(𝐹)([𝒄|𝒄′]) = NOM
::::

(𝐹)([𝒄⟩id⟨𝒄′]) (NOM-3)

= [𝒄⟩𝐹id⟨𝒄′] (NOM-F)

= [𝒄⟩id⟨𝒄′] (𝐹𝑖𝑑 = 𝑖𝑑)

= [𝒄|𝒄′] (NOM-3)

NOM
::::

(𝐹)([𝒂⟩𝑓⟨𝒄] ; [𝒄′⟩𝑔⟨𝒃]) = NOM
::::

(𝐹)([𝒂⟩𝑓 ; ⟨𝒄|𝒄′⟩ ; 𝑔⟨𝒃]) (41-1)

= [𝒂⟩𝐹(𝑓 ; ⟨𝒄|𝒄′⟩ ; 𝑔)⟨𝒃] (NOM-F)

= [𝒂⟩𝐹𝑓 ; 𝐹⟨𝒄|𝒄′⟩ ; 𝐹𝑔⟨𝒃] (𝐹(𝑎 ; 𝑏) = 𝐹𝑎 ; 𝐹𝑏)

= [𝒂⟩𝐹𝑓 ; ⟨𝒄|𝒄′⟩ ; 𝐹𝑔⟨𝒃] (𝐹𝜎 = 𝜎)

= [𝒂⟩𝐹𝑓⟨𝒄] ; [𝒄′⟩𝐹𝑔⟨𝒃] (41-1)

= NOM
::::

(𝐹)([𝒂⟩𝑓⟨𝒄]) ; NOM
::::

(𝐹)([𝒄′⟩𝑔⟨𝒃]) (NOM-F)

NOM
::::

(𝐹)([𝒂⟩𝑓⟨𝒃] ⊎ [𝒄⟩𝑔⟨𝒅]) = NOM
::::

(𝐹)([𝒂 ++ 𝒄⟩𝑓 +○ 𝑔⟨𝒃 ++ 𝒅]) (NOM-2)

= [𝒂 ++ 𝒄⟩𝐹(𝑓 +○ 𝑔)⟨𝒃 ++ 𝒅] (NOM-F)

= [𝒂 ++ 𝒄⟩𝐹𝑓 +○ 𝐹𝑔⟨𝒃 ++ 𝒅] (𝐹(𝑎 +○ 𝑏) = 𝐹𝑎 +○ 𝐹𝑏)

= [𝒂⟩𝐹𝑓⟨𝒃] ⊎ [𝒄⟩𝐹𝑔⟨𝒅] (NOM-2)

= NOM
::::

(𝐹)([𝒂⟩𝑓⟨𝒃]) ⊎ NOM
::::

(𝐹)([𝒄⟩𝑔⟨𝒅]) (NOM-F)

Proposition 7.35. ORD
:::

is a functor mapping an arrow of nPROP
:::::

s 𝐹 ∶ T → T to an

arrow of PROP
::::

s ORD
:::

(𝐹) ∶ ORD
:::

(T) → ORD
:::

(T) defined by

102

ORD
:::

(𝐹)(⟨𝒂] 𝑓 [𝒃⟩) = ⟨𝒂] 𝐹𝑓 [𝒃⟩ (ORD-F)

Proof. We need to show that ORD
:::

(𝐹) preserves bijections, sequential and parallel com-
position.

ORD
:::

(𝐹)(⟨𝒄|𝒄′⟩) = NOM
::::

(𝐹)(⟨𝒄]id[𝒄′⟩) (ORD-3)

= ⟨𝒄]𝐹id[𝒄′⟩ (ORD-F)

= ⟨𝒄]id[𝒄′⟩ (𝐹𝑖𝑑 = 𝑖𝑑)

= ⟨𝒄|𝒄′⟩ (ORD-3)

ORD
:::

(𝐹)(⟨𝒂]𝑓[𝒄⟩ ; ⟨𝒅]𝑔[𝒃⟩) = ORD
:::

(𝐹)(⟨𝒂]𝑓 ; [𝒄|𝒅] ; 𝑔[𝒃⟩) (41-3)

= ⟨𝒂]𝐹(𝑓 ; [𝒄|𝒅] ; 𝑔)[𝒃⟩ (ORD-F)

= ⟨𝒂]𝐹𝑓 ; 𝐹[𝒄|𝒅] ; 𝐹𝑔[𝒃⟩ (𝐹(𝑎 ; 𝑏) = 𝐹𝑎 ; 𝐹𝑏)

= ⟨𝒂]𝐹𝑓 ; [𝒄|𝒅] ; 𝐹𝑔[𝒃⟩ (𝐹𝛿 = 𝛿)

= ⟨𝒂]𝐹𝑓[𝒄⟩ ; ⟨𝒅]𝐹𝑔[𝒃⟩ (41-3)

= ORD
:::

(𝐹)(⟨𝒂]𝑓[𝒄⟩) ; ORD
:::

(𝐹)(⟨𝒅]𝑔[𝒃⟩) (ORD-F)

ORD
:::

(𝐹)(⟨𝒂]𝑓[𝒃⟩ +○ ⟨𝒄]𝑔[𝒅⟩) = ORD
:::

(𝐹)(⟨𝒂 ++ 𝒄]𝑓 ⊎ 𝑔[𝒃 ++ 𝒅⟩) (ORD-2)

= ⟨𝒂 ++ 𝒄]𝐹(𝑓 ⊎ 𝑔)[𝒃 ++ 𝒅⟩ (ORD-F)

= ⟨𝒂 ++ 𝒄]𝐹𝑓 ⊎ 𝐹𝑔[𝒃 ++ 𝒅⟩ (𝐹(𝑎 ⊎ 𝑏) = 𝐹𝑎 ⊎ 𝐹𝑏)

= ⟨𝒂]𝐹𝑓[𝒃⟩ +○ ⟨𝒄]𝐹𝑔[𝒅⟩ (ORD-2)

= ORD
:::

(𝐹)(⟨𝒂]𝑓[𝒃⟩) +○ ORD
:::

(𝐹)(⟨𝒄]𝑔[𝒅⟩) (ORD-F)

The next proposition has a variation in which we take PROP
::::

s in the weaker sense of Lack

[60]. Then the unit S → ORD
:::

(NOM
::::

(S)) is not an iso. To see where we need to be careful,
the next example illustrates how the commutativity of ⊎ in an nPROP

:::::
translates into the

naturality of the symmetries in a PROP
::::

.

Example 7.36. [Commutativity of ⊎ translates to naturality of symmetries]

103

If S is a PROP
::::

in the sense of Lack [60] generated by a ‘lollipop’ 𝜆 ∶ 0 → 1 then we can
show that 𝜆 +○ id and (id +○ 𝜆) ; 𝜎1,1 in S are sent to the same arrow in ORD

:::
(NOM
::::

(S)),
namely we can show ⟨𝑎][𝑎⟩𝜆 +○ id⟨𝑏, 𝑐][𝑏, 𝑐⟩ = ⟨𝑎][𝑎⟩(id +○ 𝜆) ; 𝜎1,1⟨𝑏, 𝑐][𝑏, 𝑐⟩:

⟨𝑎][𝑎⟩𝜆 +○ id⟨𝑏, 𝑐][𝑏, 𝑐⟩ = ⟨𝑎][⟩𝜆⟨𝑏] ⊎ [𝑎⟩id⟨𝑐][𝑏, 𝑐⟩ (NOM-2)

= ⟨𝑎][𝑎⟩id⟨𝑐] ⊎ [⟩𝜆⟨𝑏][𝑏, 𝑐⟩ (NMT-comm)

= ⟨𝑎][𝑎⟩id +○ 𝜆⟨𝑐, 𝑏][𝑏, 𝑐⟩ (NOM-2)

= ⟨𝑎][𝑎⟩id +○ 𝜆⟨𝑐, 𝑏] ; [𝑏, 𝑐|𝑏, 𝑐][𝑏, 𝑐⟩ (𝑎 = 𝑎 ; 𝑖𝑑, 𝛿𝑎𝑎 = 𝑖𝑑𝑎)

= ⟨𝑎][𝑎⟩(id +○ 𝜆) ; ⟨𝑐, 𝑏|𝑏, 𝑐⟩⟨𝑏, 𝑐][𝑏, 𝑐⟩ (NOM-5)

= ⟨𝑎][𝑎⟩(id +○ 𝜆) ; 𝜎1,1⟨𝑏, 𝑐][𝑏, 𝑐⟩ (𝜎-def)

which is an instance of (SMT-nat) and does not hold in S.

As we can see from the example, the naturality of symmetries in a PROP
::::

is necessary in

order to obtain that S → ORD
:::

(NOM
::::

(S)) is an iso in the next proposition.

Proposition 7.37. For each PROP
::::

S, there is an isomorphism of PROP
::::

s, natural in S,

Δ ∶ S → ORD
:::

(NOM
::::

(S))

mapping 𝑓 ∈ S to ⟨𝒂][𝒂⟩ 𝑓 ⟨𝒃][𝒃⟩ for some choice of 𝒂, 𝒃.

Proof. We first show that Δ is a homomorphism, i.e. it preserves symmetries and the
two compositions. Δ must also preserve the equations of a PROP

::::
.

Δ(⟨𝒙|𝒙′⟩) = ⟨𝒂] [𝒂⟩ ⟨𝒙|𝒙′⟩ ⟨𝒃] [𝒃⟩ (Δ-def)

= ⟨𝒂]([𝒂|𝒙] ; [𝒙′|𝒃])[𝒃⟩ (41-2)

= ⟨𝒂|𝒂⟩ ; ⟨𝒙] [𝒙′|𝒃] [𝒃⟩ (ORD-4)

= ⟨𝒙] [𝒙′|𝒃] [𝒃⟩ (𝑖𝑑 ; 𝑎 = 𝑎 = 𝑎 ; 𝑖𝑑)

= ⟨𝒙|𝒙′⟩ ; ⟨𝒃|𝒃⟩ (ORD-5)

= ⟨𝒙|𝒙′⟩ (𝑖𝑑 ; 𝑎 = 𝑎 = 𝑎 ; 𝑖𝑑)

104

Δ(𝑓 +○ 𝑔) = ⟨𝒂𝑓 ++ 𝒂𝑔] [𝒂𝑓 ++ 𝒂𝑔⟩ 𝑓 +○ 𝑔 ⟨𝒃𝑓 ++ 𝒃𝑔] [𝒃𝑓 ++ 𝒃𝑔⟩ (Δ-def, 41-5)

= ⟨𝒂𝑓 ++ 𝒂𝑔]([𝒂𝑓 ⟩ 𝑓 ⟨𝒃𝑓] ⊎ [𝒂𝑔⟩ 𝑔 ⟨𝒃𝑔])[𝒃𝑓 ++ 𝒃𝑔⟩ (NOM-2)

= ⟨𝒂𝑓][𝒂𝑓 ⟩ 𝑓 ⟨𝒃𝑓][𝒃𝑓 ⟩ +○ ⟨𝒂𝑔][𝒂𝑔⟩ 𝑔 ⟨𝒃𝑔][𝒃𝑔⟩ (ORD-2)

= Δ(𝑓) +○ Δ(𝑔) (Δ-def)

Δ(𝑓 ; 𝑔) = ⟨𝒂]([𝒂⟩𝑓 ; 𝑔⟨𝒃])[𝒃⟩ (Δ-def)

= ⟨𝒂]([𝒂⟩𝑓⟨𝒄] ; [𝒄⟩𝑔⟨𝒃])[𝒃⟩ (NOM-1)

= ⟨𝒂][𝒂⟩ 𝑓 ⟨𝒄][𝒄⟩ ; ⟨𝒄][𝒄⟩ 𝑔 ⟨𝒃][𝒃⟩ (ORD-1)

= Δ(𝑓) ; Δ(𝑔) (Δ-def)

In the last step of the derivation above, we used the fact that we can arbitrarily choose

𝒂, 𝒃 in Δ, which follows form the last equation of lem. 7.32.

To show that there is an isomorphism between S and ORD
:::

(NOM
::::

(S)), we define an
inverse to Δ:

Γ ∶ ORD
:::

(NOM
::::

(S)) → S

mapping the ⟨𝒂′][𝒂⟩ 𝑓 ⟨𝒃][𝒃′⟩ ∈ ORD
:::

(NOM
::::

(S)) generated by an 𝑓 ∈ S to

⟨𝒂′|𝒂⟩ ; 𝑓 ; ⟨𝒃|𝒃′⟩, such that that Δ ⚬ Γ and Γ ⚬ Δ are identities.

However, in order for Γ to be well-defined, we also need to show that it is a homo-

morphism. Since a homomorphism between PROP
::::

s needs to preserve equations, the

equation (SMT-nat) in ORD
:::

(NOM
::::

(S)) must be derivable in S. This is obviously impos-
sible for S a la Lack (see the example above). In the converse case we have:

Γ(⟨𝒂|𝒂′⟩) = Γ(⟨𝒂][𝒂′|𝒂′][𝒂′⟩) (𝑖𝑑 ; 𝑎 = 𝑎 = 𝑎 ; 𝑖𝑑, 41-4)

= Γ(⟨𝒂][𝒂′⟩𝑖𝑑⟨𝒂′][𝒂′⟩) (NOM-3)

= ⟨𝒂|𝒂′⟩ ; 𝑖𝑑 ; ⟨𝒂′|𝒂′⟩ (Γ-def)

= ⟨𝒂|𝒂′⟩ (𝑖𝑑 ; 𝑎 = 𝑎 = 𝑎 ; 𝑖𝑑)

105

Γ(⟨𝒂𝑓][𝒂
′
𝑓 ⟩ 𝑓 ⟨𝒃

′
𝑓][𝒃𝑓 ⟩ +○ ⟨𝒂𝑔][𝒂

′
𝑔⟩ 𝑔 ⟨𝒃

′
𝑔][𝒃𝑔⟩)

= Γ(⟨𝒂𝑓 ++ 𝒂𝑔]([𝒂
′
𝑓 ⟩ 𝑓 ⟨𝒃

′
𝑓] ⊎ [𝒂′𝑔⟩ 𝑔 ⟨𝒃

′
𝑔])[𝒃𝑓 ++ 𝒃𝑔⟩) (ORD-2)

= Γ(⟨𝒂𝑓 ++ 𝒂𝑔]([𝒂
′
𝑓 ++ 𝒂

′
𝑔⟩ 𝑓 +○ 𝑔 ⟨𝒃′𝑓 ++ 𝒃

′
𝑔])[𝒃𝑓 ++ 𝒃𝑔⟩) (NOM-2)

= ⟨𝒂𝑓 ++ 𝒂𝑔|𝒂
′
𝑓 ++ 𝒂

′
𝑔⟩ ; (𝑓 +○ 𝑔) ; ⟨𝒃′𝑓 ++ 𝒃

′
𝑔|𝒃𝑓 ++ 𝒃𝑔⟩ (Γ-def)

= (⟨𝒂𝑓|𝒂
′
𝑓 ⟩ +○ ⟨𝒂𝑔|𝒂

′
𝑔⟩) ; (𝑓 +○ 𝑔) ; (⟨𝒃′𝑓|𝒃𝑓 ⟩ +○ ⟨𝒃′𝑔|𝒃𝑔⟩)

= (⟨𝒂𝑓|𝒂
′
𝑓 ⟩ ; 𝑓 ; ⟨𝒃′𝑓|𝒃𝑓 ⟩) +○ (⟨𝒂𝑔|𝒂

′
𝑔⟩ ; 𝑔 ; ⟨𝒃′𝑔|𝒃𝑔⟩) (SMT-ch)

= Γ(⟨𝒂𝑓][𝒂
′
𝑓 ⟩ 𝑓 ⟨𝒃

′
𝑓][𝒃𝑓 ⟩) +○ Γ(⟨𝒂𝑔][𝒂

′
𝑔⟩ 𝑔 ⟨𝒃

′
𝑔][𝒃𝑔⟩) (Γ-def)

Γ(⟨𝒂][𝒂′⟩ 𝑓 ⟨𝒃′][𝒃⟩ ; ⟨𝒄][𝒄′⟩ 𝑔 ⟨𝒅′][𝒅⟩) = Γ(⟨𝒂]([𝒂′⟩ 𝑓 ⟨𝒃′] ; [𝒃|𝒄] ; [𝒄′⟩ 𝑔 ⟨𝒅′])[𝒅′⟩) (41-3)

= Γ(⟨𝒂]([𝒂′⟩(𝑓 ; ⟨𝒃′|𝒃⟩)⟨𝒄] ; [𝒄′⟩ 𝑔 ⟨𝒅′])[𝒅′⟩) (NOM-5)

= Γ(⟨𝒂]([𝒂′⟩ 𝑓 ; ⟨𝒃′|𝒃⟩ ; ⟨𝒄|𝒄′⟩ ; 𝑔 ⟨𝒅′])[𝒅′⟩) (41-1)

= ⟨𝒂|𝒂′⟩ ; 𝑓 ; ⟨𝒃′|𝒃⟩ ; ⟨𝒄|𝒄′⟩ ; 𝑔 ; ⟨𝒅′|𝒅′⟩ (Γ-def)

= Γ(⟨𝒂][𝒂′⟩ 𝑓 ⟨𝒃′][𝒃⟩) ; Γ(⟨𝒄][𝒄′⟩ 𝑔 ⟨𝒅′][𝒅⟩) (Γ-def)

Finally, we verify that Δ ⚬ Γ = 𝐼𝑑ORD:: (NOM:::(S)) and Γ ⚬ Δ = 𝐼𝑑S:

Δ(Γ(⟨𝒂][𝒂′⟩ 𝑓 ⟨𝒃′][𝒃⟩)) = Δ(⟨𝒂|𝒂′⟩ ; 𝑓 ; ⟨𝒃′|𝒃⟩) (Γ-def)

= ⟨𝒙] ([𝒙⟩(⟨𝒂|𝒂′⟩ ; 𝑓 ; ⟨𝒃′|𝒃⟩)⟨𝒚]) [𝒚⟩ (Δ-def)

= ⟨𝒙] ([𝒙|𝒂] ; [𝒂′⟩(𝑓 ; ⟨𝒃′|𝒃⟩)⟨𝒚]) [𝒚⟩ (NOM-4)

= ⟨𝒙|𝒙⟩ ; ⟨𝒂]([𝒂′⟩(𝑓 ; ⟨𝒃′|𝒃⟩)⟨𝒚]) [𝒚⟩ (ORD-4)

= ⟨𝒂]([𝒂′⟩(𝑓 ; ⟨𝒃′|𝒃⟩)⟨𝒚])[𝒚⟩ (𝑖𝑑 ; 𝑎 = 𝑎 = 𝑎 ; 𝑖𝑑)

= ⟨𝒂]([𝒂′⟩ 𝑓 ⟨𝒃′] ; [𝒃|𝒚])[𝒚⟩ (NOM-5)

= ⟨𝒂] [𝒂′⟩ 𝑓 ⟨𝒃′] [𝒃⟩ ; ⟨𝒚|𝒚⟩ (ORD-5)

= ⟨𝒂][𝒂′⟩ 𝑓 ⟨𝒃′][𝒃⟩ (𝑖𝑑 ; 𝑎 = 𝑎 = 𝑎 ; 𝑖𝑑)

Γ(Δ(𝑓)) = Γ(⟨𝒂]([𝒂⟩𝑓⟨𝒃])[𝒃⟩) (Δ-def)

= ⟨𝒂|𝒂⟩ ; 𝑓 ; ⟨𝒃|𝒃⟩ (Γ-def)

= 𝑓 (𝑖𝑑 ; 𝑎 = 𝑎 = 𝑎 ; 𝑖𝑑)

106

Proposition 7.38. For each nPROP
:::::

T , there is an isomorphism of nPROP
:::::

s, natural in T,

NOM
::::

(ORD
:::

(T)) → T

mapping the [𝒄⟩⟨𝒂] 𝑓 [𝒃⟩⟨𝒅] generated by an 𝑓 ∶ 𝒂 → 𝒃 in T to [𝒄|𝒂] ; 𝑓 ; [𝒃|𝒅].

Proof. We define a converse Δn ∶ T → NOM
::::

(ORD
:::

(T)) mapping 𝑓 ∶ 𝒂 → 𝒃 to

[𝒂⟩⟨𝒂] 𝑓 [𝒃⟩⟨𝒃] for some choice of 𝒂, 𝒃.

We now verify that Γn(Δn(𝑓)) = 𝑓 for any 𝑓 :

Γn(Δn(𝑓)) = Γn([𝒂⟩⟨𝒂] 𝑓 [𝒃⟩⟨𝒃]) (Δn-def)

= [𝒂|𝒂] ; 𝑓 ; [𝒃|𝒃] (Γn-def)

= 𝑓 (𝑖𝑑 ; 𝑎 = 𝑎 = 𝑎 ; 𝑖𝑑)

and

Δn(Γn([𝒄⟩⟨𝒂] 𝑓 [𝒃⟩⟨𝒅])) = Δn([𝒄|𝒂] ; 𝑓 ; [𝒃|𝒅]) (Γn-def)

= [𝒄⟩(⟨𝒄]([𝒄|𝒂] ; 𝑓 ; [𝒃|𝒅])[𝒅⟩)⟨𝒅] (Δn-def)

= [𝒄⟩(⟨𝒄|𝒄⟩ ; ⟨𝒂](𝑓 ; [𝒃|𝒅])[𝒅⟩)⟨𝒅] (ORD-4)

= [𝒄⟩(⟨𝒂](𝑓 ; [𝒃|𝒅])[𝒅⟩)⟨𝒅] (𝑖𝑑 ; 𝑎 = 𝑎 = 𝑎 ; 𝑖𝑑)

= [𝒄⟩(⟨𝒂] 𝑓 [𝒃⟩ ; ⟨𝒅|𝒅⟩)⟨𝒅] (ORD-5)

= [𝒄⟩⟨𝒂] 𝑓 [𝒃⟩⟨𝒅] (𝑖𝑑 ; 𝑎 = 𝑎 = 𝑎 ; 𝑖𝑑)

We also show that Δn and Γn preserve the two kinds of composition and symmetries:

Δn(𝑓 ; 𝑔) = [𝒂⟩(⟨𝒂]𝑓 ; 𝑔[𝒃⟩)⟨𝒃] (Δn-def)

= [𝒂⟩(⟨𝒂]𝑓[𝒄⟩ ; ⟨𝒄]𝑔[𝒃⟩)⟨𝒃] (ORD-1)

= [𝒂⟩⟨𝒂] 𝑓 [𝒄⟩⟨𝒄] ; [𝒄⟩⟨𝒄] 𝑔 [𝒃⟩⟨𝒃] (NOM-1)

= Δn(𝑓) ; Δn(𝑔) (Δn-def)

107

Γn([𝒄⟩⟨𝒂] 𝑓 [𝒃⟩⟨𝒅] ; [𝒅
′⟩⟨𝒆] 𝑔 [𝒇⟩⟨𝒉]) = Γn([𝒄⟩⟨𝒂] 𝑓 [𝒃⟩ ; ⟨𝒅|𝒅

′⟩ ; ⟨𝒆] 𝑔 [𝒇⟩⟨𝒉]) (ORD-1)

= Γn([𝒄⟩⟨𝒂] (𝑓 ; [𝒃|𝒅]) [𝒅
′⟩ ; ⟨𝒆] 𝑔 [𝒇⟩⟨𝒉]) (ORD-5)

= Γn([𝒄⟩⟨𝒂] (𝑓 ; [𝒃|𝒅] ; [𝒅
′|𝒆] ; 𝑔) [𝒇⟩⟨𝒉]) (41-3)

= [𝒄|𝒂] ; 𝑓 ; [𝒃|𝒅] ; [𝒅′|𝒆] ; 𝑔 ; [𝒇|𝒉] (Γn-def)

= Γn([𝒄⟩⟨𝒂] 𝑓 [𝒃⟩⟨𝒅]) ; Γn([𝒅
′⟩⟨𝒆] 𝑔 [𝒇⟩⟨𝒉]) (Γn-def)

Δn(𝑓 ⊎ 𝑔) = [𝒂𝑓 ++ 𝒂𝑔⟩ ⟨𝒂𝑓 ++ 𝒂𝑔] 𝑓 ⊎ 𝑔 [𝒃𝑓 ++ 𝒃𝑔⟩ ⟨𝒃𝑓 ++ 𝒃𝑔] (Δn-def)

= [𝒂𝑓 ++ 𝒂𝑔⟩(⟨𝒂𝑓] 𝑓 [𝒃𝑓 ⟩ +○ ⟨𝒂𝑔] 𝑔 [𝒃𝑔⟩)⟨𝒃𝑓 ++ 𝒃𝑔] (ORD-2)

= [𝒂𝑓 ⟩⟨𝒂𝑓] 𝑓 [𝒃𝑓 ⟩⟨𝒃𝑓] ⊎ [𝒂𝑔⟩⟨𝒂𝑔] 𝑔 [𝒃𝑔⟩⟨𝒃𝑔] (NOM-2)

= Δn(𝑓) ⊎ Δn(𝑔) (Δn-def)

Γn([𝒂
′
𝑓 ⟩⟨𝒂𝑓] 𝑓 [𝒃𝑓 ⟩⟨𝒃

′
𝑓] ⊎ [𝒂

′
𝑔⟩⟨𝒂𝑔] 𝑔 [𝒃𝑔⟩⟨𝒃

′
𝑔])

= Γn([𝒂
′
𝑓 ++ 𝒂

′
𝑔⟩(⟨𝒂𝑓] 𝑓 [𝒃𝑓 ⟩ +○ ⟨𝒂𝑔] 𝑔 [𝒃𝑔⟩)⟨𝒃

′
𝑓 ++ 𝒃

′
𝑔]) (NOM-2)

= Γn([𝒂
′
𝑓 ++ 𝒂

′
𝑔⟩(⟨𝒂𝑓 ++ 𝒂𝑔] 𝑓 ⊎ 𝑔 [𝒃𝑓 ++ 𝒃𝑔⟩)⟨𝒃

′
𝑓 ++ 𝒃

′
𝑔]) (ORD-2)

= [𝒂′𝑓 ++ 𝒂
′
𝑔|𝒂𝑓 ++ 𝒂𝑔] ; (𝑓 ⊎ 𝑔) ; [𝒃𝑓 ++ 𝒃𝑔|𝒃

′
𝑓 ++ 𝒃

′
𝑔] (Γn-def)

= ([𝒂′𝑓|𝒂𝑓] ⊎ [𝒂
′
𝑔|𝒂𝑔]) ; (𝑓 ⊎ 𝑔) ; ([𝒃𝑓|𝒃

′
𝑓] ⊎ [𝒃𝑔|𝒃

′
𝑔])

= ([𝒂′𝑓|𝒂𝑓] ; 𝑓 ; [𝒃𝑓|𝒃
′
𝑓]) ⊎ ([𝒂

′
𝑔|𝒂𝑔] ; 𝑔 ; [𝒃𝑔|𝒃

′
𝑔]) (NMT-ch)

= Γn([𝒂
′
𝑓 ⟩⟨𝒂𝑓] 𝑓 [𝒃𝑓 ⟩⟨𝒃

′
𝑓]) ⊎ Γn([𝒂

′
𝑔⟩⟨𝒂𝑔] 𝑔 [𝒃𝑔⟩⟨𝒃

′
𝑔]) (Γn-def)

Δn([𝒙|𝒚]) = [𝒙⟩⟨𝒙] [𝒙|𝒚] [𝒚⟩⟨𝒚] (Δn-def)

= [𝒙⟩(⟨𝒙|𝒙⟩ ; ⟨𝒚|𝒚⟩)⟨𝒚] (41-4)

= [𝒙⟩ id ⟨𝒚]

= [𝒙|𝒚] (NOM-3)

108

Γn([𝒂|𝒃]) = Γn([𝒂⟩𝑖𝑑⟨𝒃]) (NOM-3)

= Γn([𝒂⟩⟨𝒃]𝑖𝑑[𝒃⟩⟨𝒃]) (ORD-3)

= [𝒂|𝒃] ; 𝑖𝑑 ; [𝒃|𝒃] (Γn-def)

= [𝒂|𝒃]

Since the last two propositions provide an isomorphic unit and counit of an adjunction, we

obtain

Theorem 7.39. The categories PROP
::::

and nPROP
:::::

are equivalent.

Remark 7.40. If we generalise the notion of PROP
::::

from MacLane [47] to Lack [60], in

other words, if we drop the last equation of fig. 7.2 expressing the naturality of sym-

metries, we still obtain an adjunction, in which NOM
::::

is left-adjoint to ORD
:::

. Nominal

PROP
::::

s then are a full reflective subcategory of ordinary PROP
::::

s. In other words, the

(generalised) PROP
::::

s S that satisfy naturality of symmetries are exactly those for which
S ≅ ORD

:::
(NOM
::::

(S)).

7.6 Equivalence of theories

We should be able to switch easily between a notion of ordered names on the one hand and

a notion of unordered abstract names on the other. This intuition is reinforced by putting

fig. 7.3 and fig. 7.4 next to each other. A careful investigation suggests that there is a general

procedure to automatically translate one into the other.

This section will give such translations and prove that these translations are inverse to each

other and preserve completeness. This yields a tool to derive completeness of an NMT
:::

from

the completeness of the corresponding SMT
:::

and vice versa.

We start with giving a more precise definition of the relation between an SMT
:::

/NMT
:::

and a

PROP
::::

/nPROP
:::::

.

We previously defined a theory of (nominal) string diagrams as the pair ⟨Σ, 𝐸⟩, where Σ is
the set of generators and 𝐸 ⊆ Trm

:::
(Σ) × Trm

:::
(Σ) is the set of equations. The operation

Prop
::::

∶ SMT
:::

→ PROP
::::

takes the signature ⟨Σ, 𝐸⟩ to the category of SMT
:::

terms, quotiented by

the equations of 𝐸 together with the equations of an SMT
:::

.

109

Definition 7.41. The operation Prop
::::

∶ SMT
:::

→ PROP
::::

is defined as

Prop
::::

⟨Σ, 𝐸⟩ = Trm
:::

(Σ)/Th
::
(𝐸 ∪ SMT

:::
)

𝑠 = 𝑠 ∈ Th
::
(𝐸)

𝑠 = 𝑡 ∈ Th
::
(𝐸)

𝑡 = 𝑠 ∈ Th
::
(𝐸)

𝑠 = 𝑡 ∈ Th
::
(𝐸) 𝑡 = 𝑢 ∈ Th

::
(𝐸)

𝑠 = 𝑢 ∈ Th
::
(𝐸)

𝑠 = 𝑠′ ∈ Th
::
(𝐸) 𝑡 = 𝑡′ ∈ Th

::
(𝐸)

𝑠 ∗ 𝑡 = 𝑠′ ∗ 𝑡′ ∈ Th
::
(𝐸)

Figure 7.9: Closure operator

This definition uses the closure operator Th
::
, defined in fig. 7.9. Th

::
is the usual closure oper-

ator for equational deduction. We have ∗ = { ; , +○ } for Th
::

over equations on Trm
:::

s and for

equations over 𝑛Trm
::::

s we have ∗ = { ; , ⊎ } along with an additional rule for permutations:

𝑠 = 𝑡 ∈ Th
::
(𝐸)

𝜋 ⋅ 𝑠 = 𝜋 ⋅ 𝑡 ∈ Th
::
(𝐸)

We have a similar construction for NMT
:::

s, where we define a functor nProp
:::::

∶ NMT
:::

→ nPROP
:::::

:

Definition 7.42. nProp
:::::

∶ NMT
:::

→ nPROP
:::::

is defined as

nProp
:::::

⟨Σ, 𝐸⟩ = 𝑛Trm
::::

(Σ)/Th
::
(𝐸 ∪ NMT

:::
)

Finally, we prove the following property of the closure operator, which we will use in a later

lemma.

Lemma 7.43. Given a set of equations 𝑋 ⊆ 𝑛Trm
::::

(𝐴) × 𝑛Trm
::::

(𝐴) (or 𝑋 ⊆ Trm
:::

(𝐴) × Trm
:::

(𝐴)),
and a homomorphism 𝑓 ∶ 𝑛Trm

::::
(𝐴) → 𝑛Trm

::::
(𝐵) (or 𝑓 ∶ Trm

:::
(𝐴) → Trm

:::
(𝐵)), we have:

𝑓[Th
::
(𝑋)] ⊆ Th

::
(𝑓[𝑋])

Proof. The statement above is equivalent to ∀(𝑠, 𝑡) ∈ Th
::
(𝑋) . (𝑓(𝑠), 𝑓(𝑡)) ∈ Th

::
(𝑓[𝑋]).

Then, by induction on the formation rules of the set Th
::
(𝑋), we have the following cases:

• If (𝑠, 𝑡) ∈ 𝑋 , then (𝑓(𝑠), 𝑓(𝑡)) ∈ 𝑓[𝑋], by definition and therefore, (𝑓(𝑠), 𝑓(𝑡)) ∈
Th
::
(𝑓[𝑋]).

110

• If (𝑠, 𝑡) ∈ Th
::
(𝑋), by reflexivity, symmetry or transitivity, then by IH (𝑓(𝑠), 𝑓(𝑡)) ∈

Th
::
(𝑓[𝑋]).

• If (𝑠, 𝑡) ∈ Th
::
(𝑋), by congruence of ; or ⊎ or permutation, the result follows by

IH and the fact that 𝑓 is a homomorphism, e.g.:

For (𝑠 ⊎ 𝑡, 𝑠′ ⊎ 𝑡′) ∈ Th
::
(𝑋), by IH, we have

(𝑓(𝑠), 𝑓(𝑠′)) ∈ Th
::
(𝑓[𝑋]) and (𝑓(𝑡), 𝑓(𝑡′)) ∈ Th

::
(𝑓[𝑋])

then we also have

(𝑓(𝑠) ⊎ 𝑓(𝑡), 𝑓(𝑠′) ⊎ 𝑓(𝑡′)) ∈ Th
::
(𝑓[𝑋])

and since we know 𝑓 is a homomorphism, we have 𝑓(𝑠 ⊎ 𝑡) = 𝑓(𝑠) ⊎ 𝑓(𝑡), thus

(𝑓(𝑠 ⊎ 𝑡), 𝑓(𝑠′ ⊎ 𝑡′)) ∈ Th
::
(𝑓[𝑋])

7.6.1 Embedding PROPSs into nPROPs

This section briefly returns to sec. 7.5, summarising equivalence of the categories PROP
::::

and nPROP
:::::

by embedding ordinary PROP
::::

s into nPROP
:::::

s. Recall that this is achieved in the

following manner. Given an ordinary diagram 𝑓 ∶ 𝑛 → 𝑚,

f

we create “boxed” nominal versions [𝒂⟩𝑓⟨𝒃], where 𝒂 = [𝑎1, … , 𝑎𝑛] and 𝒃 = [𝑏1, … , 𝑏𝑚] are
lists of pairwise distinct names:

an

a1

f
b1

bm

For “boxing” to preserve the relevant structure, we have to ensure, in particular, that the

symmetric monoidal tensor of a PROP
::::

s is mapped to the commutative tensor of nPROP
:::::

s,

and that sequential composition and identities are preserved:

an

a1

f
c1

ck
g an

a1

f
b1

bm
g

c1

ck

111

an

a1

f
b1

bm

ak

an+1

g
bm+1

bl

bm+1

an

a1

f
b1

bm

ak

an+1

g bl

an

a1 b1

bn an

a1 b1

bn

We can thus build the following embedding of an SMT
:::

into an nPROP
:::::

:

Given an SMT
:::

⟨Σ, 𝐸⟩, we can generate an nPROP
:::::

, by taking all the SMT
:::

-terms over Σ, as
generators (taking Trm

:::
(Σ) to 𝑛Trm

::::
(Trm
:::

(Σ))) and taking box
:::

(𝐸) ∪ NOM
::::

as equations, where:

• box
:::

(𝐸) = {[𝒂⟩𝑓⟨𝒃] = [𝒂⟩𝑔⟨𝒃] ∣ 𝑓 = 𝑔 ∈ 𝐸}

• NOM
::::

are the equations from prop. 7.26

7.6.2 Translating SMTs into NMTs

Whilst the construction above gives us a way of embedding equivalence classes of ordinary

string diagrams into equivalence classes of nominal ones, it does not answer the question

of how to translate the axioms defining an SMT
:::

into the axioms of the corresponding NMT
:::

.

If we recall the definition of an NMT
:::

, we see that the signature of a nominal theory consists

of a set of ordinary generators Σ and set of equations over 𝑛Trm
::::

(Σ). Thus, given the ordinary
signature of an SMT

:::
, with generators Σ and the set of equations 𝐸 ⊆ Trm

:::
(Σ) × Trm

:::
(Σ), we

need to obtain an 𝐸′ ⊆ 𝑛Trm
::::

(Σ) × 𝑛Trm
::::

(Σ) such that any equivalence class induced by 𝐸′

and the equations of NOM
::::

(due to the ordinary diagrams being embedded in nominal ones)

are mirrored by 𝐸.

Intuitively, we translate equations of 𝐸, by first embedding them inside a “nominal box”

as a whole and then use the rules of NOM
::::

to recursively normalise all sub-diagrams into

nominal ones (see ex. 7.45). When we hit the base case, i.e. a “boxed” generator from Σ, we
simply replace it with a corresponding nominal generator:

a
c

b

a
c

b

We perform this normalisation via the function nfNmt
:::::

∶ 𝑛Trm
::::

(Trm
:::

(Σ)) → 𝑛Trm
::::

(Σ). In the
definition below, we use the notation 𝛾 to highlight the difference between an element 𝛾 of
Σ and the string diagram 𝛾 ∈ Trm

:::
(Σ) as in the blue box above.

112

nfNmt
:::::

([𝒂⟩𝛾⟨𝒃]) = [𝒂⟩𝛾⟨𝒃] where 𝛾 ∈ Σ

nfNmt
:::::

([𝑎⟩𝑖𝑑⟨𝑏]) = 𝛿𝑎𝑏

nfNmt
:::::

([𝑎𝑏⟩𝜎⟨𝑐𝑑]) = [𝑎𝑏|𝑑𝑐]

nfNmt
:::::

([𝒂⟩𝑓 ; 𝑔⟨𝒄]) = nfNmt
:::::

([𝒂⟩𝑓⟨𝒃]) ; nfNmt
:::::

([𝒃⟩𝑔⟨𝒄])

nfNmt
:::::

([𝒂 ++ 𝒃⟩𝑓 +○ 𝑔⟨𝒄 ++ 𝒅]) = nfNmt
:::::

([𝒂⟩𝑓⟨𝒄]) ⊎ nfNmt
:::::

([𝒃⟩𝑔⟨𝒅])

nfNmt
:::::

(𝑖𝑑𝑎) = 𝑖𝑑𝑎

nfNmt
:::::

(𝛿𝑎𝑏) = 𝛿𝑎𝑏

nfNmt
:::::

(𝑓 ; 𝑔) = nfNmt
:::::

(𝑓) ; nfNmt
:::::

(𝑔)

nfNmt
:::::

(𝑓 ⊎ 𝑔) = nfNmt
:::::

(𝑓) ⊎ nfNmt
:::::

(𝑔)

nfNmt
:::::

(𝜋 ⋅ 𝑓) = 𝜋 ⋅ nfNmt
:::::

(𝑓)

Definition 7.44. We define Nmt
:::

∶ SMT
:::

→ NMT
:::

as

Nmt
:::

⟨Σ, 𝐸⟩ = ⟨Σ, nfNmt
:::::

⚬ box
:::

(𝐸)⟩

where we extend the function nfNmt
:::::

on a set of equations in the obvious way:

nfNmt
:::::

(𝐸) = {nfNmt
:::::

(𝑓) = nfNmt
:::::

(𝑔) ∣ 𝑓 = 𝑔 ∈ 𝐸}

We now return to fig. 7.3 and fig. 7.4 and show in the following example, that by applying

Nmt
:::

to the equations in fig. 7.3 we obtain equations in fig. 7.4.

Example 7.45. In this example, we illustrate the translation of a rule of an SMT
:::

into the

corresponding rule of an NMT
:::

via nfNmt
:::::

. The diagram below shows the application of

nfNmt
:::::

to both sides of an equation in the SMT
:::

theory of surjections.

b

c

a

a

c

b

c

a

c

b

=

a

b

b

c

a
=c

a

b

113

The next diagram illustrates the fact that the equation (SMT-nat) get subsumed by the

equations of NMT
:::

, namely by (NMT-comm).

=

a

b

c

b

c

d

e

a

e

d

b

a

c e

d

b

c

a e

d

b

c

e

d

a

a e

b

c

d

b

c

e

d

a

b

c

a e

d

7.6.3 Completeness of NMTs

We now show that the constructions from the previous two sections yield the same nPROP
:::::

.

Starting from an SMT
:::

⟨Σ, 𝐸⟩, we can either translate it into a PROP
::::

and then apply NOM
::::

, or

we can first translate the SMT
:::

theory into an NMT
:::

theory via nfNmt
:::::

and then turn it into an

nPROP
:::::

, as illustrated by fig. 7.10.

SMT
:::

Prop
::: //

Nmt
::

��

PROP
::::

NOM
:::

��

⟨Σ, 𝐸⟩ //

//

Prop
::::

⟨Σ, 𝐸⟩

��

NOM
::::

(Prop
::::

⟨Σ, 𝐸⟩)
nfNmt
::::

��

nProp
:::::

(Nmt
:::

⟨Σ, 𝐸⟩)

𝜄
:

JJ

NMT
:::

nProp
::: // nPROP

:::::

Figure 7.10: Completing the square

We set up some preliminaries. First, we define the map 𝜄
:
∶ 𝑛Trm

::::
(Σ) → 𝑛Trm

::::
(Trm
:::

(Σ)), which

114

is an injection map going in the opposite direction to nfNmt
:::::

:

𝜄
:
([𝒂⟩𝛾⟨𝒃]) = [𝒂⟩𝛾⟨𝒃] where 𝛾 ∈ Σ

𝜄
:
(𝑖𝑑𝑎) = 𝑖𝑑𝑎

𝜄
:
(𝛿𝑎𝑏) = 𝛿𝑎𝑏

𝜄
:
(𝑓 ; 𝑔) = 𝜄

:
(𝑓) ; 𝜄

:
(𝑔)

𝜄
:
(𝑓 ⊎ 𝑔) = 𝜄

:
(𝑓) ⊎ 𝜄

:
(𝑔)

𝜄
:
(𝜋 ⋅ 𝑓) = 𝜋 ⋅ 𝜄

:
(𝑓)

The only interesting thing happens in the case for a nominal generator, which gets turned

into an ordinary string diagram, embedded in a nominal diagram.

Next, we show that the maps nfNmt
:::::

and 𝜄
:
are inverses of each other (up to some equational

reasoning).

Lemma 7.46. We have nfNmt
:::::

⚬ 𝜄
:
(𝑓) = 𝑓 for any 𝑓 ∈ 𝑛Trm

::::
(Σ).

Proof. By induction on 𝑓 .

Lemma 7.47. Wehave 𝜄
:
⚬nfNmt

:::::
(𝑓) NOM=

:
𝑓 for any 𝑓 ∈ 𝑛Trm

::::
(Trm
:::

(Σ)). Where NOM=
:
is equality

up to the equations NOM
::::

∪ NMT
:::

∪ box
:::

[SMT
:::

].

Proof. By induction on 𝑓 , we see that all the cases follow either by 𝜄
:
⚬ nfNmt

:::::
being

the identity, such as in the case of 𝑓 = 𝑠 ⊎ 𝑡, s.t.

𝜄
:
⚬ nfNmt

:::::
(𝑠 ⊎ 𝑡) = 𝜄

:
(nfNmt
:::::

(𝑠) ⊎ nfNmt
:::::

(𝑡)) NOM=
:
(𝜄
:
⚬ nfNmt

:::::
(𝑠)) ⊎ (𝜄

:
⚬ nfNmt

:::::
(𝑡)) NOM=

:
𝑠 ⊎ 𝑡

Where the last equality follows by the IH.

For almost all 𝑓 of the shape [𝒂⟩𝑠⟨𝒃], the proposition follows directly from the equations

NOM
::::

, for example, if 𝑓 = [𝒂⟩𝑠 ; 𝑡⟨𝒄] we have

𝜄
:
⚬ nfNmt

:::::
([𝒂⟩𝑠 ; 𝑡⟨𝒄]) = (𝜄

:
⚬ nfNmt

:::::
([𝒂⟩𝑠⟨𝒃])) ; (𝜄

:
⚬ nfNmt

:::::
([𝒃⟩𝑡⟨𝒄]))

NOM=
:
[𝒂⟩𝑠⟨𝒃] ; [𝒃⟩𝑡⟨𝒄] NOM=

:
[𝒂⟩𝑠 ; 𝑡⟨𝒄]

In the case of 𝑓 = [𝒂⟩𝛾⟨𝒄], we have

𝜄
:
⚬ nfNmt

:::::
([𝒂⟩𝛾⟨𝒄]) = 𝜄

:
([𝒂⟩𝛾⟨𝒄]) = [𝒂⟩𝛾⟨𝒄]

115

The only case which requires further analysis is 𝑓 = [𝑎𝑏⟩𝜎⟨𝑐𝑑], for which we have

𝜄
:
⚬ nfNmt

:::::
([𝑎𝑏⟩𝜎⟨𝑐𝑑]) = 𝜄

:
([𝑎𝑏|𝑑𝑐])

= [𝑎𝑏|𝑑𝑐] NOM=
:
[𝑏𝑎|𝑐𝑑] NOM=

:
[𝑏𝑎⟩𝑖𝑑⟨𝑐𝑑]

NOM=
:
[𝑎𝑏|𝑎𝑏] ; [𝑏𝑎⟩𝑖𝑑⟨𝑐𝑑]

NOM=
:
[𝑎𝑏⟩⟨𝑎𝑏|𝑏𝑎⟩ ; 𝑖𝑑⟨𝑐𝑑]

NOM=
:
[𝑎𝑏⟩⟨𝑎𝑏|𝑏𝑎⟩⟨𝑐𝑑]

= [𝑎𝑏⟩𝜎⟨𝑐𝑑]

Lemma 7.48. The diagram in fig. 7.10 commutes

Proof. We want to show that the two maps nfNmt
:::::

and 𝜄
:
are isomorphisms. By defini-

tion, both nfNmt
:::::

and 𝜄
:
are homomorphisms between the term algebras and we have

shown in lem. 7.46 that nfNmt
:::::

⚬ 𝜄
:
(𝑓) = 𝑓 and 𝜄

:
⚬ nfNmt

:::::
(𝑓) NOM=

:
𝑓 follows from lem. 7.47.

To verify that these maps are well-defined, that is, maps between equivalence classes

of 𝑛Trm
::::

s, we need to check that they preserve the equations:

• for the map 𝜄
:
, we have to show

𝜄
:
[Th
::
(nfNmt
:::::

[box
:::

[𝐸]] ∪ NMT
:::

)] ⊆ Th
::
(Th
::
(box
:::

[𝐸 ∪ SMT
:::

]) ∪ NOM
::::

∪ NMT
:::

)

In fact, by lem. 7.43, it suffices to check that 𝜄
:
[nfNmt
:::::

[box
:::

[𝐸]]] ⊆ Th
::
(box
:::

[𝐸] ∪
NMT
:::

) and 𝜄
:
[NMT
:::

] ⊆ Th
::
(box
:::

[𝐸] ∪ NMT
:::

). The first inequality follows immediately
from the fact that 𝜄

:
[nfNmt
:::::

[box
:::

[𝐸]] = box
:::

[𝐸]. The second inequality follows
straightforwardly.

• for the map nfNmt
:::::

, we have to show the other direction

nfNmt
:::::

[Th
::
(Th
::
(box
:::

[𝐸 ∪ SMT
:::

]) ∪ NOM
::::

∪ NMT
:::

)] ⊆ Th
::
(nfNmt
:::::

[box
:::

[𝐸]] ∪ NMT
:::

)

By lem. 7.43, we have nfNmt
:::::

[Th
::
(𝑋)] ⊆ Th

::
(nfNmt
:::::

[𝑋]), in the following chain of

116

inequalities:

nfNmt
:::::

[Th
::
(Th
::
(box
:::

[𝐸 ∪ SMT
:::

]) ∪ NOM
::::

∪ NMT
:::

)]

⊆ Th
::
(nfNmt
:::::

[Th
::
(box
:::

[𝐸 ∪ SMT
:::

]) ∪ NOM
::::

∪ NMT
:::

])

= Th
::
(nfNmt
:::::

[Th
::
(box
:::

[𝐸 ∪ SMT
:::

])) ∪ nfNmt
:::::

[NOM
::::

∪ NMT
:::

])

⊆ Th
::
(Th
::
(nfNmt
:::::

[box
:::

[𝐸 ∪ SMT
:::

]]) ∪ nfNmt
:::::

[NOM
::::

∪ NMT
:::

])

= Th
::
(nfNmt
:::::

[box
:::

[𝐸 ∪ SMT
:::

]] ∪ nfNmt
:::::

[NOM
::::

∪ NMT
:::

])

= Th
::
(nfNmt
:::::

[box
:::

[𝐸]] ∪ nfNmt
:::::

[box
:::

[SMT
:::

]] ∪ nfNmt
:::::

[NOM
::::

] ∪ nfNmt
:::::

[NMT
:::

])

⊆ Th
::
(nfNmt
:::::

[box
:::

[𝐸]] ∪ NMT
:::

)

To justify the last inequality, we only need to prove:

– nfNmt
:::::

[box
:::

[𝐸]] ⊆ Th
::
(nfNmt
:::::

[box
:::

[𝐸]] ∪ NMT
:::

)

Follows immediately.

– nfNmt
:::::

[box
:::

[SMT
:::

]] ⊆ Th
::
(nfNmt
:::::

[box
:::

[𝐸]] ∪ NMT
:::

)

The equations in SMT
:::

get subsumed by NMT
:::

when box
:::

-ed and normalised

via nfNmt
:::::

. We only show the most interesting equation (SMT-nat). For a

graphical intuition of this equality, see ex. 7.45. We write 𝒂𝑚 for a list of

117

𝑎’s of length 𝑚 in the equational reasoning below:

nfNmt
:::::

([𝒂𝑚 ++ 𝒂𝑧⟩ (𝑡 +○ 𝑖𝑑𝑧) ; 𝜎𝑛,𝑧 ⟨𝒃
𝑧 ++ 𝒃𝑛])

= nfNmt
:::::

(𝒂𝑚 ++ 𝒂𝑧⟩ 𝑡 +○ 𝑖𝑑𝑧 ⟨𝒙
𝑛 ++ 𝒙𝑧]) ; nfNmt

:::::
([𝒙𝑛 ++ 𝒙𝑧⟩ 𝜎𝑛,𝑧 ⟨𝒃

𝑧 ++ 𝒃𝑛])

= (nfNmt
:::::

([𝒂𝑚⟩ 𝑡 ⟨𝒙𝑛]) ⊎ nfNmt
:::::

([𝒂𝑧⟩ 𝑖𝑑𝑧 ⟨𝒙
𝑧])) ; [𝒙𝑛 ++ 𝒙𝑧|𝒃𝑛 ++ 𝒃𝑧]

= (nfNmt
:::::

([𝒂𝑚⟩ 𝑡 ⟨𝒙𝑛]) ⊎ [𝒂𝑧|𝒙𝑧]) ; [𝒙𝑛 ++ 𝒙𝑧|𝒃𝑛 ++ 𝒃𝑧]

NMT= (nfNmt
:::::

([𝒂𝑚⟩ 𝑡 ⟨𝒙𝑛]) ; [𝒙𝑛|𝒃𝑛]) ⊎ ([𝒂𝑧|𝒙𝑧] ; [𝒙𝑧|𝒃𝑧])

NMT= (nfNmt
:::::

([𝒂𝑚⟩ 𝑡 ⟨𝒙𝑛]) ; [𝒙𝑛|𝒃𝑛]) ⊎ [𝒂𝑧|𝒃𝑧]

NMT=
∗
nfNmt
:::::

([𝒂𝑚⟩ 𝑡 ⟨𝒃𝑛]) ⊎ [𝒂𝑧|𝒃𝑧]

NMT=
∗
([𝒂𝑚|𝒚𝑚] ; nfNmt

:::::
([𝒚𝑚⟩ 𝑡 ⟨𝒃𝑛])) ⊎ [𝒂𝑧|𝒃𝑧]

NMT= ([𝒂𝑚|𝒚𝑚] ; nfNmt
:::::

([𝒚𝑚⟩ 𝑡 ⟨𝒃𝑛])) ⊎ ([𝒂𝑧|𝒚𝑧] ; [𝒚𝑧|𝒃𝑧])

NMT= [𝒂𝑚 ++ 𝒂𝑧|𝒚𝑚 ++ 𝒚𝑧] ; (nfNmt
:::::

([𝒚𝑚⟩ 𝑡 ⟨𝒃𝑛]) ⊎ [𝒚𝑧|𝒃𝑧])

NMT= [𝒂𝑚 ++ 𝒂𝑧|𝒚𝑚 ++ 𝒚𝑧] ; ([𝒚𝑧|𝒃𝑧] ⊎ nfNmt
:::::

([𝒚𝑚⟩ 𝑡 ⟨𝒃𝑛]))

= [𝒂𝑚 ++ 𝒂𝑧|𝒚𝑚 ++ 𝒚𝑧] ; (nfNmt
:::::

([𝒚𝑧⟩ 𝑖𝑑𝑧 ⟨𝒃
𝑧]) ⊎ nfNmt

:::::
([𝒚𝑚⟩ 𝑡 ⟨𝒃𝑛]))

= [𝒂𝑚 ++ 𝒂𝑧|𝒚𝑚 ++ 𝒚𝑧] ; nfNmt
:::::

([𝒚𝑧 ++ 𝒚𝑚⟩ 𝑖𝑑𝑧 +○ 𝑡 ⟨𝒃𝑧 ++ 𝒃𝑛])

= nfNmt
:::::

([𝒂𝑚 ++ 𝒂𝑧⟩ 𝜎𝑚,𝑧 ⟨𝒚
𝑧 ++ 𝒚𝑚]) ; nfNmt

:::::
([𝒚𝑧 ++ 𝒚𝑚⟩ 𝑖𝑑𝑧 +○ 𝑡 ⟨𝒃𝑧 ++ 𝒃𝑛])

= nfNmt
:::::

([𝒂𝑚 ++ 𝒂𝑧⟩ 𝜎𝑚,𝑧 ; (𝑖𝑑𝑧 +○ 𝑡) ⟨𝒃𝑧 ++ 𝒃𝑛])

To justify the two steps in the middle of the derivation (marked with ∗),
we need to show:

[𝒂|𝐱] ; nfNmt
:::::

([𝐱⟩ 𝑡 ⟨𝒃]) NMT= nfNmt
:::::

([𝒂⟩ 𝑡 ⟨𝒃]) NMT= nfNmt
:::::

([𝒂⟩ 𝑡 ⟨𝐲]) ; [𝐲|𝒃]

This follows straightforwardly by induction on 𝑡:

* If 𝑡 = 𝛾 where 𝛾 ∈ Σ, then we can apply (NMT-left) for all 𝛿𝑎𝑖𝑥𝑖s to get
the LHS equality and (NMT-right) for all 𝛿𝑦𝑖𝑏𝑖s to get the RHS.

* If 𝑡 = 𝑖𝑑, then nfNmt
:::::

([𝐱⟩ 𝑡 ⟨𝒃]) = [𝐱|𝒃] and both equalities follow by

the second equation of fig. 7.8.

* If 𝑡 = 𝑝 ; 𝑞, by IH [𝒂|𝐱] ; nfNmt
:::::

([𝐱⟩ 𝑝 ⟨𝐳]) NMT= nfNmt
:::::

([𝒂⟩ 𝑝 ⟨𝐳]), thus we

118

have:

[𝒂|𝐱] ; nfNmt
:::::

([𝐱⟩ 𝑝 ; 𝑞 ⟨𝒃])

= [𝒂|𝐱] ; nfNmt
:::::

([𝐱⟩𝑝⟨𝐳]) ; nfNmt
:::::

([𝐳⟩𝑞⟨𝒃])

NMT= nfNmt
:::::

([𝒂⟩ 𝑝 ⟨𝐳]) ; nfNmt
:::::

([𝐳⟩ 𝑞 ⟨𝒃])

= nfNmt
:::::

([𝒂⟩ 𝑡 ⟨𝒃])

The RHS equality follows in a similar fashion.

* If 𝑡 = 𝑝 +○ 𝑞, we reason as in the case of 𝑡 = 𝑝 ; 𝑞.

– nfNmt
:::::

[NOM
::::

] ⊆ Th
::
(nfNmt
:::::

[box
:::

[𝐸]] ∪ NMT
:::

)

The only two equations which require any serious verification are (NOM-4)

and (NOM-5). The proofs of both are essentially the same, so we will only

consider the first one here:

nfNmt
:::::

([𝒂⟩⟨𝒃|𝒃′⟩ ; 𝑓⟨𝒄]) = nfNmt
:::::

([𝒂⟩⟨𝒃|𝒃′⟩⟨𝐱]) ; nfNmt
:::::

([𝐱⟩𝑓⟨𝒄])

NMT= nfNmt
:::::

([𝒂⟩⟨𝒃|𝒃′⟩⟨𝒃′]) ; nfNmt
:::::

([𝒃′⟩𝑓⟨𝒄])

NMT= [𝒂|𝒃] ; [𝒃|𝒂] ; nfNmt
:::::

([𝒂⟩⟨𝒃|𝒃′⟩⟨𝒃′]) ; nfNmt
:::::

([𝒃′⟩𝑓⟨𝒄])

NMT= [𝒂|𝒃] ; nfNmt
:::::

([𝒃⟩⟨𝒃|𝒃′⟩⟨𝒃′]) ; nfNmt
:::::

([𝒃′⟩𝑓⟨𝒄])

NMT= [𝒂|𝒃] ; nfNmt
:::::

([𝒃′⟩𝑓⟨𝒄])

For the justification of nfNmt
:::::

([𝒃⟩⟨𝒃|𝒃′⟩⟨𝒃′]) NMT= 𝑖𝑑 see the remark below.

– nfNmt
:::::

[NMT
:::

] ⊆ Th
::
(nfNmt
:::::

[box
:::

[𝐸]] ∪ NMT
:::

)

Follows straightforwardly.

Remark 7.49. Whilst we have been using the ⟨−|−⟩ notation as syntactic sugar for ar-
bitrary bijections (in PROP

::::
) throughout the last two chapters, we have not provided a

rigorous definition beyond the informal description at the beginning of sec. 7.5. Below

we give an inductive definition for this notation and prove that

nfNmt
:::::

([𝒂⟩⟨𝒂|𝒂′⟩⟨𝒂]) NMT= 𝑖𝑑𝐴

First we review some preliminaries. We write 𝜎𝑚,𝑛 ∶ 𝑚 +○ 𝑛 → 𝑛 +○ 𝑚 for the diagram

119

m

n

In the following definition we will write 𝒂 ! 𝑥 for the indexing function, which, given a
list 𝒂 and an element 𝑥, returns the position (index) of the element in the list. Finally,
we denote the underlying set of 𝒂 by 𝐴 and |𝒂| stands for the length of 𝒂.

⟨−|−⟩ ∶ (𝒂 ∶ Σ 𝑙𝑖𝑠𝑡) × (𝒂′ ∶ Σ 𝑙𝑖𝑠𝑡) → |𝒂| → |𝒂′|

⟨[]|𝒂⟩ = 𝑖𝑑|𝒂|

⟨𝑥 ∶ 𝑥𝑠|𝒂⟩ =

⎧⎪⎪
⎨⎪⎪
⎩

(𝑖𝑑𝑖 +○ 𝜎1, 𝑗−𝑖 +○ 𝑖𝑑|𝒂|− (𝑗+1)) ; ⟨𝑥𝑠|𝒂⟩ if 𝑖 < 𝑗

⟨𝑥𝑠|𝒂⟩ if 𝑖 = 𝑗

(𝑖𝑑𝑗 +○ 𝜎𝑖−𝑗,1 +○ 𝑖𝑑|𝒂|− (𝑖+1)) ; ⟨𝑥𝑠|𝒂⟩ otherwise

where 𝑖 = |𝒂| − |𝑥 ∶ 𝑥𝑠|

𝑗 = 𝒂 ! 𝑥

Now we show

nfNmt
:::::

([𝒂⟩⟨𝑥𝑠|𝒂′⟩⟨𝒂′]) NMT= 𝑖𝑑𝐴

provided that 𝑠𝑒𝑡(𝑥𝑠) ⊆ 𝐴, 𝑠𝑒𝑡(𝒂) = 𝑠𝑒𝑡(𝒂′) and |𝒂| = |𝒂′|.

Proof by induction on 𝑥𝑠:

• If 𝑥𝑠 = [], then

nfNmt
:::::

([𝒂⟩⟨[]|𝒂′⟩⟨𝒂]) = nfNmt
:::::

([𝒂⟩𝑖𝑑|𝒂′|⟨𝒂]) = 𝑖𝑑𝐴

• If 𝑥𝑠 = 𝑦 ∶ 𝑦𝑠, we have three cases:

120

– If 𝑖 < 𝑗, then:

nfNmt
:::::

([𝒂⟩⟨𝑦 ∶ 𝑦𝑠|𝒂′⟩⟨𝒂′])

= nfNmt
:::::

([𝒂⟩(𝑖𝑑𝑖 +○ 𝜎1, 𝑗−𝑖 +○ 𝑖𝑑|𝒂′|− (𝑗+1)) ; ⟨𝑦𝑠|𝒂
′⟩⟨𝒂′])

= nfNmt
:::::

([𝒂⟩𝑖𝑑𝑖 +○ 𝜎1, 𝑗−𝑖 +○ 𝑖𝑑|𝒂′|− (𝑗+1)⟨𝐱]) ; nfNmt:::::
([𝐱⟩⟨𝑦𝑠|𝒂⟩⟨𝒂′])

NMT= nfNmt
:::::

([𝒂⟩𝑖𝑑𝑖 +○ 𝜎1, 𝑗−𝑖 +○ 𝑖𝑑|𝒂′|− (𝑗+1)⟨𝒂0…𝑖−1 ++ 𝒂𝑖+1…𝑗 ++ 𝒂𝑖 ++ 𝒂𝑗+1…|𝒂|−1]) ;

nfNmt
:::::

([𝒂0…𝑖−1 ++ 𝒂𝑖+1…𝑗 ++ 𝒂𝑖 ++ 𝒂𝑗+1…|𝒂|−1⟩⟨𝑦𝑠|𝒂⟩⟨𝒂
′])

= (nfNmt
:::::

([𝒂0…𝑖−1⟩𝑖𝑑𝑖⟨𝒂0…𝑖−1]) ⊎

nfNmt
:::::

([𝒂𝑖…𝑗⟩𝜎1, 𝑗−𝑖⟨𝒂𝑖+1…𝑗 ++ 𝒂𝑖]) ⊎

nfNmt
:::::

([𝒂𝑗+1…|𝒂|−1⟩𝑖𝑑|𝒂′|− (𝑗+1)⟨𝒂𝑗+1…|𝒂|−1])) ;

nfNmt
:::::

([𝒂0…𝑖−1 ++ 𝒂𝑖+1…𝑗 ++ 𝒂𝑖 ++ 𝒂𝑗+1…|𝒂|−1⟩⟨𝑦𝑠|𝒂⟩⟨𝒂
′])

= ([𝒂0…𝑖−1|⟨𝒂0…𝑖−1] ⊎ [𝒂𝑖…𝑗|𝒂𝑖…𝑗] ⊎ [𝒂𝑗+1…|𝒂|−1|𝒂𝑗+1…|𝒂|−1]) ;

nfNmt
:::::

([𝒂0…𝑖−1 ++ 𝒂𝑖+1…𝑗 ++ 𝒂𝑖 ++ 𝒂𝑗+1…|𝒂|−1⟩⟨𝑦𝑠|𝒂⟩⟨𝒂
′])

NMT= nfNmt
:::::

([𝒂0…𝑖−1 ++ 𝒂𝑖+1…𝑗 ++ 𝒂𝑖 ++ 𝒂𝑗+1…|𝒂|−1⟩⟨𝑦𝑠|𝒂⟩⟨𝒂
′]) NMT= 𝑖𝑑𝐴

Note that the last equality follows by IH, since we have 𝑠𝑒𝑡(𝑦𝑠) ⊆ 𝐴,
𝑠𝑒𝑡(𝒂0…𝑖−1 ++ 𝒂𝑖+1…𝑗 ++ 𝒂𝑖 ++ 𝒂𝑗+1…|𝒂|−1) = 𝑠𝑒𝑡(𝒂) = 𝑠𝑒𝑡(𝒂

′) and |𝒂0…𝑖−1 ++ 𝒂𝑖+1…𝑗 ++ 𝒂𝑖 ++
𝒂𝑗+1…|𝒂|−1| = |𝒂| = |𝒂

′|.
– If 𝑖 = 𝑗 then we immediately have

nfNmt
:::::

([𝒂⟩⟨𝑦 ∶ 𝑦𝑠|𝒂′⟩⟨𝒂′]) = nfNmt
:::::

([𝒂⟩⟨𝑦𝑠|𝒂′⟩⟨𝒂′]) NMT= 𝑖𝑑𝐴

– If 𝑖 > 𝑗 then the reasoning is symmetric to the case 𝑖 < 𝑗,

In sec. 7.3, we introduced the NMT
:::

theories for the categories of bijections, injections, sur-

jections and functions on names (amongst others). In thm. 7.20, we stated that the theories

presented in fig. 7.4 are sound and complete. Below we restate this result, now with a proof.

Theorem 7.50. [Completeness of NMT
:::

s]

The calculi of fig. 7.4 are sound and complete, that is, the categories presented by these

calculi are isomorphic to the categories of finite sets of names with the respective maps.

Proof. We show the result for the category of finite functions n𝔽
::
. Similar arguments

apply to the other theories presented in fig. 7.4. First, by completeness of an SMT
:::

⟨Σ, 𝐸⟩ with regards to some category ℂ, we mean that the PROP
::::

presented by ⟨Σ, 𝐸⟩ is

121

isomorphic to ℂ
Prop
::::

⟨Σ, 𝐸⟩ ≅ ℂ

Likewise, we define the completeness for an NMT
:::

with regards to some category nℂ, as

nProp
:::::

⟨Σ, 𝐸⟩ ≅ nℂ

In order to show completeness of the nominal theory of functions w.r.t. n𝔽
::
, we start

with the SMT
:::

⟨Σ𝔽, 𝐸𝔽⟩ (see fig. 7.3).

From lem. 7.48 we know that

NOM
::::

(Prop
::::

⟨Σ𝔽, 𝐸𝔽⟩) ≅ nProp:::::
(Nmt
:::

⟨Σ𝔽, 𝐸𝔽⟩)

From ex. 7.27 we know that

NOM
::::

(𝔽
:
) ≅ n𝔽

::

From completeness of ⟨Σ𝔽, 𝐸𝔽⟩ for 𝔽 we know

Prop
::::

⟨Σ𝔽, 𝐸𝔽⟩ ≅ 𝔽

Putting these together, we obtain

nProp
:::::

(Nmt
:::

⟨Σ𝔽, 𝐸𝔽⟩) ≅ n𝔽::

that is, Nmt
:::

⟨Σ𝔽, 𝐸𝔽⟩ is complete for n𝔽::
.

7.6.4 Embedding nominal PROPSs into PROPSs

In order to go back from nominal to ordinary string diagrams, we can build a similar con-

struction to the one in sec. 7.6.1, by taking an NMT
:::

⟨Σ, 𝐸⟩ to ⟨Trm
:::

(dia
::
(𝑛Trm
::::

(Σ))), dia
::
(𝐸) ∪ORD

:::
⟩,

where:

• dia
::
(𝑡 ∶ 𝐴 → 𝐵) = ⟨𝒂] 𝑡 [𝒃⟩ where 𝑠𝑒𝑡(𝒂) = 𝐴 and 𝑠𝑒𝑡(𝒃) = 𝐵, which is extended to a set

of equations in the obvious way dia
::
(𝐸) = {⟨𝒂] 𝑠 [𝒃⟩ = ⟨𝒂] 𝑡 [𝒃⟩ ∣ 𝑠 = 𝑡 ∈ 𝐸}

• ORD
:::

are the equations from prop. 7.29

We draw ⟨𝒂] 𝑓 [𝒃⟩ as

an

a1

f
b1

bm

122

7.6.5 Translating NMTs into SMTs

This section follows the same lines as sec. 7.6.2, but now translating nominal monoidal

theories into symmetric monoidal theories. Indeed, we can convert an NMT
:::

into an SMT
:::

by

first embedding nominal equations into ordinary string diagrams and then normalising the

diagrams via a function nfSmt
:::::

, which we are going to define now.

Compared to normalising ordinary string diagrams embedded in the nominal setting, nor-

malising embedded nominal string diagrams into ordinary string diagrams is slightly more

tricky. This is due to the fact that in nominal sequential composition, we are allowed to

compose two diagrams which share the same set of output and input labels, disregarding

the order of the named ports. For example, in the picture below, we see a wire crossing

inside the purple box, introduced by the fact that the ports of the box interface and the

ports of the generator inside the box have to be lined up.
a

b
c

b

a

However, no such crossing is (directly) visible in the linear syntax ⟨𝑎, 𝑏][𝑏, 𝑎⟩𝜇⟨𝑐][𝑐⟩. Thus,
when translating such a diagram back into an ordinary string diagram, we might need to

insert some symmetries, i.e. the diagram ⟨𝑎, 𝑏][𝑏, 𝑎⟩𝜇⟨𝑐][𝑐⟩ should normalise to 𝜎 ; 𝜇:

a

b
c

b

a

After these preliminary considerations, we now define nfSmt
:::::

∶ Trm
:::

(dia
::
(𝑛Trm
::::

(Σ))) → Trm
:::

(Σ):

nfSmt
:::::

(⟨𝒂][𝒂′⟩𝛾⟨𝒃′][𝒃⟩) = ⟨𝒂|𝒂′⟩ ; 𝛾 ; ⟨𝒃′|𝒃⟩ where 𝛾 ∈ Σ

nfSmt
:::::

(⟨𝑎]𝑖𝑑𝑎[𝑎⟩) = 𝑖𝑑

nfSmt
:::::

(⟨𝑎]𝛿𝑎𝑏[𝑏⟩) = 𝑖𝑑

nfSmt
:::::

(⟨𝒂]𝑓 ; 𝑔[𝒄⟩) = nfSmt
:::::

(⟨𝒂]𝑓[𝒃⟩) ; nfSmt
:::::

(⟨𝒃]𝑔[𝒄⟩)

nfSmt
:::::

(⟨𝒂]𝑓 ⊎ 𝑔[𝒃⟩) = ⟨𝒂|𝒂1 ++ 𝒂2⟩ ; (nfSmt:::::
(⟨𝒂1]𝑓[𝒃1⟩) +○ nfSmt

:::::
(⟨𝒂2]𝑔[𝒃2⟩)) ; ⟨𝒃1 ++ 𝒃2|𝒃⟩

nfSmt
:::::

(⟨𝒂]𝜋 ⋅ 𝑓[𝒃⟩) = nfSmt
:::::

(⟨𝜋−1 ⋅ 𝒂] 𝑓 [𝜋−1 ⋅ 𝒃⟩)

nfSmt
:::::

(𝛾) = 𝛾 where 𝛾 ∈ Σ

nfSmt
:::::

(𝑖𝑑) = 𝑖𝑑

nfSmt
:::::

(𝜎) = 𝜎

nfSmt
:::::

(𝑓 ; 𝑔) = nfSmt
:::::

(𝑓) ; nfSmt
:::::

(𝑔)

nfSmt
:::::

(𝑓 +○ 𝑔) = nfSmt
:::::

(𝑓) +○ nfSmt
:::::

(𝑔)

123

Definition 7.51. We define Smt
:::

∶ NMT
:::

→ SMT
:::

as

Smt
:::

⟨Σ, 𝐸⟩ = ⟨Σ, nfSmt
:::::

⚬ dia
::
(𝐸)⟩

7.6.6 Completeness of SMTs

We now show that the constructions from the previous two sections yield the same PROP
::::

,

namely, starting from an NMT
:::

⟨Σ, 𝐸⟩, we can either translate it into a nPROP
:::::

and then apply

ORD
:::

, or we can first translate the NMT
:::

theory into an SMT
:::

theory via nfSmt
:::::

and then turn it

into a PROP
::::

.

NMT
:::

nProp
::: //

Smt
::

��

nPROP
:::::

ORD
::

��

⟨Σ, 𝐸⟩ //

//

nProp
:::::

⟨Σ, 𝐸⟩

��

ORD
:::

(nProp
:::::

⟨Σ, 𝐸⟩)
nfSmt
:::

��

Prop
::::

(Smt
:::

⟨Σ, 𝐸⟩)

𝜄
:

JJ

SMT
:::

Prop
::: // PROP

::::

Figure 7.11: Completing the square

We set up some preliminaries. First, we define the map 𝜄
:
∶ Trm

:::
(Σ) → Trm

:::
(dia
::
(𝑛Trm
::::

(Σ))),
which is an injection map going in the opposite direction to nfSmt

:::::
:

𝜄
:
(𝛾) = ⟨𝒂][𝒂⟩𝛾⟨𝒃][𝒃⟩ where 𝛾 ∈ Σ

𝜄
:
(𝑖𝑑) = 𝑖𝑑

𝜄
:
(𝜎) = 𝜎

𝜄
:
(𝑓 ; 𝑔) = 𝜄

:
(𝑓) ; 𝜄

:
(𝑔)

𝜄
:
(𝑓 +○ 𝑔) = 𝜄

:
(𝑓) +○ 𝜄

:
(𝑔)

124

Next, we show that the maps nfSmt
:::::

and 𝜄
:
are inverses of each other.

Lemma 7.52. We have nfSmt
:::::

⚬ 𝜄
:
(𝑓) SMT= 𝑓 for any 𝑓 ∈ Trm

:::
(Σ).

Proof. By induction on 𝑓 . The only case of interest is 𝑓 = 𝛾 where 𝛾 ∈ Σ:

nfSmt
:::::

⚬ 𝜄
:
(𝛾) = nfSmt

:::::
(⟨𝒂][𝒂⟩𝛾⟨𝒃][𝒃⟩) = ⟨𝒂|𝒂⟩ ; 𝛾 ; ⟨𝒃|𝒃⟩ SMT= 𝛾

Lemma 7.53. We have 𝜄
:
⚬ nfSmt

:::::
(𝑓) ORD=

:
𝑓 for any 𝑓 ∈ Trm

:::
(dia
::
(𝑛Trm
::::

(Σ))). Where ORD=
:

is

equality up to the equations ORD
:::

∪ SMT
:::

∪ dia
::
[NMT
:::

].

Proof. By induction on 𝑓 :

• If 𝑓 = ⟨𝒂][𝒂′⟩𝛾⟨𝒃′][𝒃⟩, then

𝜄
:
⚬ nfSmt

:::::
(⟨𝒂][𝒂′⟩𝛾⟨𝒃′][𝒃⟩) = 𝜄

:
(⟨𝒂|𝒂′⟩ ; 𝛾 ; ⟨𝒃′|𝒃⟩)

= ⟨𝒂|𝒂′⟩ ; ⟨𝐱][𝐱⟩𝛾⟨𝐲][𝐲⟩ ; ⟨𝒃′|𝒃⟩
ORD=
:
⟨𝒂][𝒂′|𝐱] ; [𝐱⟩𝛾⟨𝐲] ; [𝐲|𝒃′][𝒃⟩

ORD=
:
⟨𝒂][𝒂′⟩𝛾⟨𝒃′][𝒃⟩

In the equational reasoning above, we use (ORD-4) and (ORD-5) in the third

equality and then use the “lifted” rules (NMT-left) and (NMT-right) repeatedly to

obtain the last equality.

• If 𝑓 = ⟨𝑎]𝑖𝑑𝑎[𝑎⟩, then

𝜄
:
⚬ nfSmt

:::::
(⟨𝑎]𝑖𝑑𝑎[𝑎⟩) = 𝜄

:
(𝑖𝑑) = 𝑖𝑑 ORD=

:
⟨𝑎]𝑖𝑑𝑎[𝑎⟩

• If 𝑓 = ⟨𝑎]𝛿𝑎𝑏[𝑏⟩, then

𝜄
:
⚬ nfSmt

:::::
(⟨𝑎]𝛿𝑎𝑏[𝑏⟩) = 𝜄

:
(𝑖𝑑) = 𝑖𝑑

ORD=
:
⟨𝑎]𝑖𝑑𝑎[𝑎⟩

ORD=
:
⟨𝑎][𝑎|𝑏] ; [𝑏|𝑎][𝑎⟩

ORD=
:
⟨𝑎][𝑎|𝑏][𝑏⟩ ; ⟨𝑎|𝑎⟩ ORD=

:
⟨𝑎]𝛿𝑎𝑏[𝑏⟩

125

• If 𝑓 = ⟨𝒂]𝑓 ; 𝑔[𝒄⟩, then

𝜄
:
⚬ nfSmt

:::::
(⟨𝒂]𝑓 ; 𝑔[𝒄⟩) = 𝜄

:
(nfSmt
:::::

(⟨𝒂]𝑓[𝒃⟩) ; nfSmt
:::::

(⟨𝒃]𝑔[𝒄⟩))

= 𝜄
:
(nfSmt
:::::

(⟨𝒂]𝑓[𝒃⟩)) ; 𝜄
:
(nfSmt
:::::

(⟨𝒃]𝑔[𝒄⟩))

ORD=
:
⟨𝒂]𝑓[𝒃⟩ ; ⟨𝒃]𝑔[𝒄⟩

ORD=
:
⟨𝒂]𝑓 ; 𝑔[𝒄⟩

• If 𝑓 = ⟨𝒂]𝑓 ⊎ 𝑔[𝒃⟩, then

𝜄
:
⚬ nfSmt

:::::
(⟨𝒂]𝑓 ⊎ 𝑔[𝒃⟩)

= 𝜄
:
(⟨𝒂|𝒂1 ++ 𝒂2⟩ ; (nfSmt:::::

(⟨𝒂1]𝑓[𝒃1⟩) +○ nfSmt
:::::

(⟨𝒂2]𝑔[𝒃2⟩)) ; ⟨𝒃1 ++ 𝒃2|𝒃⟩)

= ⟨𝒂|𝒂1 ++ 𝒂2⟩ ; 𝜄: (nfSmt:::::
(⟨𝒂1]𝑓[𝒃1⟩) +○ nfSmt

:::::
(⟨𝒂2]𝑔[𝒃2⟩)) ; ⟨𝒃1 ++ 𝒃2|𝒃⟩

= ⟨𝒂|𝒂1 ++ 𝒂2⟩ ; (𝜄: (nfSmt:::::
(⟨𝒂1]𝑓[𝒃1⟩)) +○ 𝜄

:
(nfSmt
:::::

(⟨𝒂2]𝑔[𝒃2⟩))) ; ⟨𝒃1 ++ 𝒃2|𝒃⟩

ORD=
:
⟨𝒂|𝒂1 ++ 𝒂2⟩ ; (⟨𝒂1]𝑓[𝒃1⟩ +○ ⟨𝒂2]𝑔[𝒃2⟩) ; ⟨𝒃1 ++ 𝒃2|𝒃⟩

ORD=
:
⟨𝒂|𝒂1 ++ 𝒂2⟩ ; ⟨𝒂1 ++ 𝒂2]𝑓 ⊎ 𝑔[𝒃1 ++ 𝒃2⟩ ; ⟨𝒃1 ++ 𝒃2|𝒃⟩

ORD=
:
⟨𝒂][𝒂1 ++ 𝒂2|𝒂1 ++ 𝒂2] ; (𝑓 ⊎ 𝑔) ; [𝒃1 ++ 𝒃2|𝒃1 ++ 𝒃2][𝒃⟩

ORD=
:
⟨𝒂]𝑓 ⊎ 𝑔[𝒃⟩

• If 𝑓 = ⟨𝒂]𝜋 ⋅ 𝑓[𝒃⟩, then

𝜄
:
⚬ nfSmt

:::::
(⟨𝒂]𝜋 ⋅ 𝑓[𝒃⟩) = 𝜄

:
(nfSmt
:::::

(⟨𝜋−1 ⋅ 𝒂]𝑓[𝜋−1 ⋅ 𝒃⟩))

ORD=
:
⟨𝜋−1 ⋅ 𝒂]𝑓[𝜋−1 ⋅ 𝒃⟩

ORD=
:
⟨𝜋 ⋅ 𝜋−1 ⋅ 𝒂]𝜋 ⋅ 𝑓[𝜋 ⋅ 𝜋 − 1 ⋅ 𝒃⟩

ORD=
:
⟨𝒂]𝜋 ⋅ 𝑓[𝒃⟩

All the other cases of 𝑓 follow straightforwardly (for the other cases, see the definition
of nfSmt

:::::
).

Lemma 7.54. The diagram in fig. 7.11 commutes

126

Proof. We want to show that the two maps nfSmt
:::::

and 𝜄
:
are isomorphisms. By defini-

tion, both nfSmt
:::::

and 𝜄
:
are homomorphisms between the term algebras and we have

shown in lem. 7.52 that nfSmt
:::::

⚬ 𝜄
:
(𝑓) SMT= 𝑓 and 𝜄

:
⚬ nfSmt

:::::
(𝑓) ORD=

:
𝑓 follows from lem. 7.53.

To verify that these maps are well-defined, that is, maps between equivalence classes

of Trm
:::

s, we need to check that they preserve the equations:

• for the map 𝜄
:
, we have to show

𝜄
:
[Th
::
(nfSmt
:::::

[dia
::
[𝐸]] ∪ SMT

:::
)] ⊆ Th

::
(Th
::
(dia
::
[𝐸 ∪ NMT

:::
]) ∪ ORD

:::
∪ SMT

:::
)

In fact, by lem. 7.43, it suffices to check that 𝜄
:
[nfSmt
:::::

[dia
::
[𝐸]]] ⊆ Th

::
(dia
::
[𝐸 ∪

dia
::
[NMT
:::

] ∪ ORD
:::

∪ SMT
:::

) and 𝜄
:
[SMT
:::

] ⊆ Th
::
(SMT
:::

). The first inequality follows

immediately from the fact that 𝜄
:
[nfSmt
:::::

[dia
::
[𝐸]] ORD=

:
dia
::
[𝐸]. The second inequality

follows immediately.

• for the map nfSmt
:::::

, we have to show the other direction

nfSmt
:::::

[Th
::
(Th
::
(dia
::
[𝐸 ∪ NMT

:::
]) ∪ ORD

:::
∪ SMT

:::
)] ⊆ Th

::
(nfSmt
:::::

[dia
::
[𝐸]] ∪ SMT

:::
)

We have :

nfSmt
:::::

[Th
::
(Th
::
(dia
::
[𝐸 ∪ NMT

:::
]) ∪ ORD

:::
∪ SMT

:::
)]

⊆ Th
::
(nfNmt
:::::

[Th
::
(dia
::
[𝐸 ∪ NMT

:::
]) ∪ ORD

:::
∪ SMT

:::
])

= Th
::
(nfNmt
:::::

[Th
::
(dia
::
[𝐸 ∪ NMT

:::
])) ∪ nfNmt

:::::
[ORD
:::

∪ SMT
:::

])

⊆ Th
::
(Th
::
(nfSmt
:::::

[dia
::
[𝐸 ∪ NMT

:::
]]) ∪ nfSmt

:::::
[ORD
:::

∪ SMT
:::

])

= Th
::
(nfSmt
:::::

[dia
::
[𝐸 ∪ NMT

:::
]] ∪ nfSmt

:::::
[ORD
:::

∪ SMT
:::

])

= Th
::
(nfNmt
:::::

[dia
::
[𝐸]] ∪ nfSmt

:::::
[dia
::
[NMT
:::

]] ∪ nfSmt
:::::

[ORD
:::

] ∪ nfSmt
:::::

[SMT
:::

])

⊆ Th
::
(nfSmt
:::::

[dia
::
[𝐸]] ∪ SMT

:::
)

To justify the last inequality, we only need to prove:

– nfSmt
:::::

[dia
::
[𝐸]] ⊆ Th

::
(nfSmt
:::::

[dia
::
[𝐸]] ∪ SMT

:::
)

Follows immediately.

– nfSmt
:::::

[dia
::
[NMT
:::

]] ⊆ Th
::
(nfSmt
:::::

[dia
::
[𝐸]] ∪ SMT

:::
)

It is easy enough to see for most equations of nfSmt
:::::

[dia
::
[NMT
:::

]] are in

127

Th
::
(SMT
:::

). For the interesting case of (NMT-comm) being preserved by

nfSmt
:::::

⚬ dia
::
, see the proof in prop. 7.29.

– nfSmt
:::::

[ORD
:::

] ⊆ Th
::
(nfSmt
:::::

[dia
::
[𝐸]] ∪ SMT

:::
)

The only two equations which require any serious verification are (ORD-4)

and (ORD-5). The proofs of both are essentially the same, so we will only

consider the first one here:

nfSmt
:::::

(⟨𝒂][𝒂′|𝒃]; 𝑓[𝒄⟩) = nfSmt
:::::

(⟨𝒂][𝒂′|𝒃][𝒃′⟩) ; nfSmt
:::::

(⟨𝒃′]𝑓[𝒄⟩)

SMT= nfSmt
:::::

(⟨𝒂][𝒂′|𝒃][𝒃⟩) ; nfSmt
:::::

(⟨𝒃]𝑓[𝒄⟩)

SMT= ⟨𝒂|𝒂′⟩ ; nfSmt
:::::

(⟨𝒃]𝑓[𝒄⟩)

= nfSmt
:::::

(⟨𝒂|𝒂′⟩) ; nfSmt
:::::

(⟨𝒃]𝑓[𝒄⟩)

= nfSmt
:::::

(⟨𝒂|𝒂′⟩ ; ⟨𝒃]𝑓[𝒄⟩)

For these equalities to hold, we need to show

nfSmt
:::::

(⟨𝒂]𝑡[𝒃′⟩) ; ⟨𝒃′|𝒃⟩ SMT= nfSmt
:::::

(⟨𝒂]𝑡[𝒃⟩)

which follows by induction on 𝑡:

* If 𝑡 = [𝒂′⟩𝛾⟨𝒃″] then we have

nfSmt
:::::

(⟨𝒂][𝒂′⟩𝛾⟨𝒃″][𝒃′⟩) ; ⟨𝒃′|𝒃⟩ = ⟨𝒂|𝒂′⟩ ; 𝛾 ; ⟨𝒃″|𝒃′⟩ ; ⟨𝒃′|𝒃⟩

SMT= ⟨𝒂|𝒂′⟩ ; 𝛾 ; ⟨𝒃″|𝒃⟩

= nfSmt
:::::

(⟨𝒂][𝒂′⟩𝛾⟨𝒃″][𝒃⟩)

* If 𝑡 = 𝑖𝑑 or 𝑡 = 𝛿𝑎𝑏 then we have

nfSmt
:::::

(⟨𝑎]𝛿𝑎𝑏[𝑏⟩) ; ⟨𝑏|𝑏⟩
SMT= nfSmt

:::::
(⟨𝑎]𝛿𝑎𝑏[𝑏⟩)

immediately.

* If 𝑡 = 𝑓 ; 𝑔 then we have

nfSmt
:::::

(⟨𝒂]𝑓 ; 𝑔[𝒃′⟩) ; ⟨𝒃′|𝒃⟩ = nfSmt
:::::

(⟨𝒂]𝑓[𝒄⟩) ; nfSmt
:::::

(⟨𝒄]𝑔[𝒃′⟩) ; ⟨𝒃′|𝒃⟩

SMT= nfSmt
:::::

(⟨𝒂]𝑓[𝒄⟩) ; nfSmt
:::::

(⟨𝒄]𝑔[𝒃⟩)

= nfSmt
:::::

(⟨𝒂]𝑓 ; 𝑔[𝒃⟩)

128

* If 𝑡 = 𝑓 ⊎ 𝑔 then we have

nfSmt
:::::

(⟨𝒂]𝑓 ⊎ 𝑔[𝒃′⟩) ; ⟨𝒃′|𝒃⟩

= ⟨𝒂|𝒂1 ++ 𝒂2⟩ ; (nfSmt:::::
(⟨𝒂1]𝑓[𝒃1⟩) +○ nfSmt

:::::
(⟨𝒂2]𝑔[𝒃2⟩)) ; ⟨𝒃1 ++ 𝒃2|𝒃

′⟩ ; ⟨𝒃′|𝒃⟩

SMT= ⟨𝒂|𝒂1 ++ 𝒂2⟩ ; (nfSmt:::::
(⟨𝒂1]𝑓[𝒃1⟩) +○ nfSmt

:::::
(⟨𝒂2]𝑔[𝒃2⟩)) ; ⟨𝒃1 ++ 𝒃2|𝒃⟩

= nfSmt
:::::

(⟨𝒂]𝑓 ⊎ 𝑔[𝒃⟩)

* If 𝑡 = 𝜋 ⋅ 𝑓 then we have

nfSmt
:::::

(⟨𝒂]𝜋 ⋅ 𝑓[𝒃′⟩) ; ⟨𝒃′|𝒃⟩ = nfSmt
:::::

(⟨𝜋−1 ⋅ 𝒂]𝑓[𝜋−1 ⋅ 𝒃′⟩) ; ⟨𝒃′|𝒃⟩

SMT= nfSmt
:::::

(⟨𝜋−1 ⋅ 𝒂]𝑓[𝜋−1 ⋅ 𝒃′⟩) ; ⟨𝜋−1 ⋅ 𝒃′|𝜋−1 ⋅ 𝒃⟩

SMT= nfSmt
:::::

(⟨𝜋−1 ⋅ 𝒂]𝑓[𝜋−1 ⋅ 𝒃⟩)

= nfSmt
:::::

(⟨𝒂]𝜋 ⋅ 𝑓[𝒃⟩)

We also need to show

nfSmt
:::::

(⟨𝒂][𝒂′|𝒃][𝒃⟩) SMT= ⟨𝒂|𝒂′⟩

which follows by induction on 𝒂′:

* If 𝒂′ = [𝑎] the equality is trivially true

* If 𝒂′ = 𝑎 ∶ 𝒂𝐬 we have 𝒃 = 𝑏 ∶ 𝒃𝐬

nfSmt
:::::

(⟨𝒂][𝑎 ∶ 𝒂𝐬|𝒃][𝒃⟩)

= nfSmt
:::::

(⟨𝒂]𝛿𝑎𝑏 ⊎ [𝒂𝐬|𝒃𝐬][𝒃⟩)

= ⟨𝒂|𝑎 ∶ 𝒂𝐬′⟩ ; (nfSmt
:::::

(⟨𝑎]𝛿𝑎𝑏[𝑏⟩) +○ nfSmt
:::::

(⟨𝒂𝐬′][𝒂𝐬|𝒃𝐬][𝒃𝐬⟩)) ; ⟨𝑏 ∶ 𝒃𝐬|𝒃⟩

= ⟨𝒂|𝑎 ∶ 𝒂𝐬′⟩ ; (𝑖𝑑 +○ nfSmt
:::::

(⟨𝒂𝐬′][𝒂𝐬|𝒃𝐬][𝒃𝐬⟩))

SMT= ⟨𝒂|𝑎 ∶ 𝒂𝐬′⟩ ; (𝑖𝑑 +○ ⟨𝒂𝐬′|𝒂𝐬⟩)
SMT= ⟨𝒂|𝑎 ∶ 𝒂𝐬′⟩ ; ⟨𝑎 ∶ 𝒂𝐬′|𝑎 ∶ 𝒂𝐬⟩
SMT= ⟨𝒂|𝑎 ∶ 𝒂𝐬⟩

– nfSmt
:::::

[SMT
:::

] ⊆ Th
::
(nfSmt
:::::

[dia
::
[𝐸]] ∪ SMT

:::
) Follows immediately.

To conclude this section, we give an analogous result to thm. 7.50 below.

Theorem 7.55. [Completeness of SMT
:::

s]

129

Given an NMT
:::

⟨Σ, 𝐸⟩, which is complete for some nℂ, s.t. ORD
:::

(nℂ) ≅ ℂ, we show that

Smt
:::

⟨Σ𝔽, 𝐸𝔽⟩ is complete for ℂ.

Proof. From lem. 7.54 we know that

ORD
:::

(nProp
:::::

⟨Σ, 𝐸⟩) ≅ Prop
::::

(Smt
:::

⟨Σ, 𝐸⟩)

From completeness of ⟨Σ, 𝐸⟩ for nℂ we know

nProp
:::::

⟨Σ, 𝐸⟩ ≅ nℂ

Putting these together, we obtain

Prop
::::

(Smt
:::

⟨Σ, 𝐸⟩) ≅ ℂ

The theorem above can be useful when trying to prove soundness and completeness of an

ordinary SMT
:::

, where the presented NMT
:::

is easier to prove sound and complete, like in the

case of bijections, discussed previously at the end of sec. 7.3.

7.7 Related work

Whilst our work is novel in its presentation of nominal string diagrams as monoidal cate-

gories internal in Nom
::::

, we are by no means the first to generalise PROP
::::

s to a multi-sorted

or nominal settings. Indeed, even (one of) the earliest papers on string diagrams, namely

that of Roger Penrose [11], already introduces “nominal” string diagrams where the wires

of his pictures are given labels. Amongst later works, the most commonly seen variation

to ordinary string diagrams is the notion of colored props [53, 61]. Whilst similar in some

aspects to nominal string diagrams, colored string diagrams are somewhat orthogonal to

named string diagrams, in that coloured string diagrams usually still have ordered sets of

wires, but a nominal variant could be considered with a set of named wires.

Finally, we must mention the work of Blute et al. [62], which is similar in many aspects

to our work, especially in the use of the diamond notation ⟨−] − [−⟩, which we arrived at
independently from the authors, before learning of their work. Another paper in similar

spitrit, by Ghica and Lopez [63], introduces a version of nominal string diagrams by explicitly

introducing names and binders for ordinary string diagrams.

130

7.8 Conclusion

The equivalence of nominal and ordinary PROP
::::

s (thm. 7.39) has a satisfactory graphical

interpretation. Indeed, comparing figs. 7.3, 7.4, truncated and shown side by side below, we

see that both share, modulo different labellings of wires mediated by the functors ORD
:::

and

NOM
::::

, the same core of generators and equations. The difference lies only in the equations

expressing, on the one hand, that +○ has natural symmetries and, on the other hand, that

generators are a nominal set. In fact, this can be taken as a justification of the importance

of naturality, which, informally speaking, compensates for the irrelevant detail induced by

ordering names.

a x c a c= a=a a

x a a=

a

b

x

d

c

a

b
d

c

x
==

a

c

b

b

c

a

a x

c

b

a

c

b

a

x

b

c

a

c

b
==

a

b

x

a b=

a

x

b

a

b
==x

=

==

==

= =

==

= =

There are several directions for future research. First, the notion of an internal monoidal

category has been developed because it is easier to prove the basic results in general rather

than only in the special case of nominal sets. Nevertheless, it would be interesting to

explore whether there are other interesting instances of internal monoidal categories.

Second, internal monoidal categories are a principled way to build monoidal categories

with a partial tensor. For example, by working internally in the category of nominal sets

with the separated product we can capture in a natural way constraints such as the tensor

𝑓 +○ 𝑔 for two partial maps 𝑓, 𝑔 ∶ N → 𝑉 being defined only if the domains of 𝑓 and
𝑔 are disjoint. This reminds us of the work initiated by O’Hearn and Pym on categorical

and algebraic models for separation logic and other resource logics, see e.g. [64–66]. It

seems promising to investigate how to build categorical models for resource logics based

on internal monoidal theories. In one direction, one could extend the work of Curien and

Mimram [50] to partial monoidal categories.

131

Third, there has been substantial progress in exploiting Lack’s work on composing PROP
::::

s

[60] in order to develop novel string diagrammatic calculi for a wide range of applications,

see e.g. [51, 67]. It will be interesting to explore how much of this technology can be trans-

ferred from PROP
::::

s to nominal PROP
::::

s.

Fourth, various applications of nominal string diagrams could be of interest. The original

motivation for our work was to obtain a convenient calculus for simultaneous substitutions

that can be integrated with multi-type display calculi [31] and, in particular, with the multi-

type display calculus for first-order logic of Tzimoulis [68]. Another direction for applications

comes from the work of Ghica and Lopez [63] on a nominal syntax for string diagrams. In

particular, it would be of interest to add various binding operations to nominal PROP
::::

s.

132

La bonne cuisine est la base du véritable bonheur.

Auguste Escoffier

8
Conclusion

A
s was already mentioned in the introduction, this thesis is split into two sec-

tions, corresponding roughly to the two main topics tackled throughout this

PhD. In this concluding chapter, we give a chronological overview of how this

work developed.

The work on display logics, specifically the calculus toolbox, started in my undergraduate

studies as the final year project. When I started my PhD, the original topic was “Efficient

methods of proof search for display calculi”, where the aim was to explore known efficient

proof search tactics for certain logics, such as semantic tableaux or proof search tactics like

focusing, and extrapolating these tactics for display calculi. During this initial exploration,

it became apparent that the initial version of the calculus toolbox was too fragile for useful

exploration of various different display logics. The original toolbox was also insufficient to

formalise multi-type display calculi, like the D.EAK [7]. Thus the calculus toolbox 2, described

in ch. 3, was born.

Working with our collaborators on a display version of first order logic, our focus shifted

to string diagrams, explored in the second part of this thesis, for two main reasons. The

first was the excellent introductory course on string diagrams, given by Paweł Sobociński.

Inspired by his course and stemmed from a need for a calculus of simultaneous substitu-

tions for our work on a display version of FOL, we started exploring the topic of nominal

string diagrams.

Our initial approach to a categorical underpinning for string diagrams featuring labeled

133

wires has been presented in ch. 6. The aim of this work was to give a rigorous account of

the partiality of the parallel tensor ⊎, inherent in the restriction of only stacking diagrams
with disjoint wires/ports. This led us to the notion of partial monoids, which we turned into

a categorical notion of partial monoidal categories. The rest of ch. 6 tests these ideas on

concrete examples, by adapting ordinary string diagrams to the nominal setting following

Lafont [49].

It may seem that ch. 7 supersedes ch. 6, but this is not entirely the case. Whilst ch. 7 does in-

deed present a refined notion of nominal string diagrams by introducing nominal monoidal

categories, partially monoidal categories are in some sense more general than nominal

monoidal categories and would make for an interesting topic of further study outside of

the scope of nominal string diagrams.

In ch. 7, we simplified the formalism of nominal string diagrams by turning the tensor ⊎ back
into a total operation, now within the setting of nominal sets. Using internal monoidal cat-

egories also helped us simplify the underlying categories of nominal string diagrams; see

rem. 7.25 vs def. 6.8 for comparison. This chapter also improves upon the earlier techniques

of showing completeness for NMT
:::

s, by giving a recipe for translating an ordinary SMT
:::

along

with it’s completeness with respect to some category ℂ, to an NMT
:::

which is complete with

respect to some nominal version of ℂ. Whilst we have only shown this construction for basic
theories, there are many SMT

:::
s, which could potentially benefit from this “nominalisation”,

for example, this recent work by Jacobs and Zanasi [69]; see also [70, 71].

In the last year of the PhD, paralleling the work on nominal string diagrams, we developed

yet another new version of the calculus toolbox. Just as the work on nominal string diagrams

stemmed out of a need for a calculus of substitutions for the display version of FOL, calculus

toolbox 3 was designed to address the difficulties associated with formalising this calculus

in a computer. Unlike the previous version of multi-type display calculi, DFOL presented
unique challenges, which the previous version of the calculus toolbox couldn’t effectively

deal with.

This thesis represents the last three and a half years of my PhD and looking back, I have

fond memories of this time. Having obtained some answers, there are yet more interesting

questions which could fill several more PhD’s.

134

Bibilography

[1] G. Gentzen, Untersuchungen über das logische Schließen I, Mathematische Zeitschrift,
vol. 39, pp. 176–210, 1935. DOI: 10.1007/BF01201353

[2] N. Belnap, Display Logic, Journal of Philosophical Logic, vol. 11, pp. 375–417, 1982. DOI:
10.1007/BF00284976

[3] M. Kracht, Power and Weakness of the Modal Display Calculus, in Applied Logic Series,
Springer Netherlands, 1996, pp. 93–121. DOI: 10.1007/978-94-017-2798-3_7

[4] H. Wansing, Displaying Modal Logic. Springer Netherlands, 1998. DOI: 10.1007/978-94-017-
1280-4

[5] R. Gore, Substructural Logics on Display, Logic Journal of IGPL, vol. 6, no. 3, pp. 451–504,
May 1998. DOI: 10.1093/jigpal/6.3.451

[6] J. Brotherston, Bunched Logics Displayed, Studia Logica, vol. 100, no. 6, pp. 1223–1254,
Oct. 2012. DOI: 10.1007/s11225-012-9449-0

[7] S. Frittella, G. Greco, A. Kurz, A. Palmigiano, and V. Sikimic, A proof-theoretic semantic
analysis of dynamic epistemic logic, Journal of Logic and Computation, vol. 26, no. 6, pp.
1961–2015, 2016. DOI: 10.1093/logcom/exu063

[8] S. Balco, S. Frittella, G. Greco, A. Kurz, and A. Palmigiano, Software Tool Support for Mod-
ular Reasoning in Modal Logics of Actions in Interactive theorem proving, 2018, pp. 48–67.
DOI: 10.1007/978-3-319-94821-8_4

[9] G. Hotz, Eine Algebraisierung des Syntheseproblems von Schaltkreisen I, Elektronische
Informationsverarbeitung und Kybernetik, vol. 1, pp. 185–205, 1965

[10] J. H. Przytycki, Classical Roots of Knot Theory, Chaos, Solitons & Fractals, vol. 9, nos. 4-5,
pp. 531–545, 1998. DOI: 10.1016/s0960-0779(97)00107-0

[11] R. Penrose, Applications of Negative Dimensional Tensors in Combinatorial Mathematics
and its Applications, 1971, pp. 221–244. available at: https://www2.math.uic.edu/~kauffman/
Penrose.pdf

[12] A. Joyal and R. Street, Braided Tensor Categories, Advances in Mathematics, vol. 102, no.
1, pp. 20–78, Nov. 1993. DOI: 10.1006/aima.1993.1055

[13] A. Joyal and R. Street, The geometry of tensor calculus, I, Advances in Mathematics, vol.
88, no. 1, pp. 55–112, 1991. DOI: 10.1016/0001-8708(91)90003-P

[14] J. R. B. Cockett and R. A. G. Seely, Proof theory of the cut rule, in Categories for theWorking
Philosopher, Oxford University Press, 2018. DOI: 10.1093/oso/9780198748991.003.0010

135

https://doi.org/10.1007/BF01201353
https://doi.org/10.1007/BF00284976
https://doi.org/10.1007/978-94-017-2798-3_7
https://doi.org/10.1007/978-94-017-1280-4
https://doi.org/10.1007/978-94-017-1280-4
https://doi.org/10.1093/jigpal/6.3.451
https://doi.org/10.1007/s11225-012-9449-0
https://doi.org/10.1093/logcom/exu063
https://doi.org/10.1007/978-3-319-94821-8_4
https://doi.org/10.1016/s0960-0779(97)00107-0
https://www2.math.uic.edu/~kauffman/Penrose.pdf
https://www2.math.uic.edu/~kauffman/Penrose.pdf
https://doi.org/10.1006/aima.1993.1055
https://doi.org/10.1016/0001-8708(91)90003-P
https://doi.org/10.1093/oso/9780198748991.003.0010

[15] J.-Y. Girard, Linear logic, Theoretical Computer Science, vol. 50, no. 1, pp. 1–101, 1987. DOI:
10.1016/0304-3975(87)90045-4

[16] P.-A. Melliès, Functorial Boxes in String Diagrams, in Computer science logic, Springer
Berlin Heidelberg, 2006, pp. 1–30. DOI: 10.1007/11874683_1

[17] R. Milner, Pure bigraphs: Structure and dynamics, Information and Computation, vol.
204, no. 1, pp. 60–122, Jan. 2006. DOI: 10.1016/j.ic.2005.07.003

[18] S. Mason, Feedback Theory-Some Properties of Signal Flow Graphs, Proceedings of the
IRE, vol. 41, no. 9, pp. 1144–1156, Sep. 1953. DOI: 10.1109/jrproc.1953.274449

[19] F. Bonchi and F. Sobociński Paweł and Zanasi, Full Abstraction for Signal Flow Graphs in
Proceedings of the 42Nd Annual ACM SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages, 2015, pp. 515–526. DOI: 10.1145/2676726.2676993

[20] B. Coecke and A. Kissinger, Picturing quantum processes: A first course in quan-
tum theory and diagrammatic reasoning. Cambridge University Press, 2017. DOI:
10.1017/9781316219317

[21] S. Mac Lane, Categorical algebra, Bulletin of the American Mathematical Society, vol. 71,
no. 1, pp. 40–106, Jan. 1965. DOI: 10.1090/S0002-9904-1965-11234-4

[22] P. Selinger, A Survey of Graphical Languages for Monoidal Categories, in New Structures
for Physics, Springer Berlin Heidelberg, 2010, pp. 289–355. DOI: 10.1007/978-3-642-12821-9_4

[23] M. J. Gabbay, A Theory of Inductive DefinitionsWith 𝛼-equivalence, PhD thesis, University
of Cambridge, UK, 2001. available at: http://www.gabbay.org.uk/papers/thesis.pdf

[24] A. M. Pitts, Nominal sets: Names and symmetry in computer science. Cambridge Uni-
versity Press, 2013. DOI: 10.1017/CBO9781139084673

[25] B. Lellmann and D. Pattinson, Correspondence between Modal Hilbert Axioms and Se-
quent Rules with an Application to S5, in Lecture notes in computer science, Springer Berlin
Heidelberg, 2013, pp. 219–233. DOI: 10.1007/978-3-642-40537-2_19

[26] A. Avron, The Method of Hypersequents in the Proof Theory of Propositional Non-
Classical Logics, in Logic: From foundations to applications: European logic colloquium,
USA: Clarendon Press, 1996, pp. 1–32

[27] A. Tiu, A System of Interaction and Structure II: The Need for Deep Inference, Logical
Methods in Computer Science, vol. 2, no. 2, Apr. 2006. DOI: 10.2168/lmcs-2(2:4)2006

[28] R. Ramanayake, Embedding the hypersequent calculus in the display calculus, Journal
of Logic and Computation, vol. 25, no. 3, pp. 921–942, Oct. 2014. DOI: 10.1093/logcom/exu061

[29] C. Rauszer, A Formalization of the Propositional Calculus of H-B Logic, Studia Logica,
vol. 33, no. 1, pp. 23–34, Mar. 1974. DOI: 10.1007/bf02120864

[30] H. Wansing, Constructive negation, implication, and co-implication, Journal of Applied
Non-Classical Logics, vol. 18, nos. 2-3, pp. 341–364, Jan. 2008. DOI: 10.3166/jancl.18.341-364

[31] S. Frittella, G. Greco, A. Kurz, A. Palmigiano, and V. Sikimic, Multi-type display calculus
for dynamic epistemic logic, Journal of Logic and Computation, vol. 26, no. 6, pp. 2017–2065,
2016. DOI: 10.1093/logcom/exu068

136

https://doi.org/10.1016/0304-3975(87)90045-4
https://doi.org/10.1007/11874683_1
https://doi.org/10.1016/j.ic.2005.07.003
https://doi.org/10.1109/jrproc.1953.274449
https://doi.org/10.1145/2676726.2676993
https://doi.org/10.1017/9781316219317
https://doi.org/10.1090/S0002-9904-1965-11234-4
https://doi.org/10.1007/978-3-642-12821-9_4
http://www.gabbay.org.uk/papers/thesis.pdf
https://doi.org/10.1017/CBO9781139084673
https://doi.org/10.1007/978-3-642-40537-2_19
https://doi.org/10.2168/lmcs-2(2:4)2006
https://doi.org/10.1093/logcom/exu061
https://doi.org/10.1007/bf02120864
https://doi.org/10.3166/jancl.18.341-364
https://doi.org/10.1093/logcom/exu068

[32] J. Plaza, Logics of public communications, Synthese, vol. 158, no. 2, pp. 165–179, Sep.
2007. DOI: 10.1007/s11229-007-9168-7

[33] R. Fagin, Reasoning About Knowledge. The MIT Press, 1995

[34] M. Sadrzadeh, A. Palmigiano, and M. Ma, Algebraic semantics and model completeness
for intuitionistic public announcement logic in Logic, rationality, and interaction, 2011, pp.
394–395

[35] A. Tzimoulis, Algebraic and Proof-Theoretic Foundations of the Logics for Social Be-
haviour, PhD thesis, Delft University of Technology, 2018. DOI: 10.4233/uuid:e67e7724-b378-
4ca3-ad4e-c40df245af5e

[36] S. T. Kuhn, Quantifiers as modal operators, Studia Logica, vol. 39, no. 2, pp. 145–158, Jun.
1980. DOI: 10.1007/BF00370318

[37] J. van Benthem, Modal Foundations for Predicate Logic, Logic Journal of IGPL, vol. 5, no.
2, pp. 259–286, 1997. DOI: 10.1093/jigpal/5.2.259

[38] R. Montague, Logical necessity, physical necessity, ethics, and quantifiers, Inquiry:
An Interdisciplinary Journal of Philosophy, vol. 3, nos. 1-4, pp. 259–269, 1960. DOI:
10.1080/00201746008601312

[39] F. W. Lawvere, Adjointness in Foundations, Dialectica, vol. 23, pp. 281–296, May 1969.
DOI: 10.1111/j.1746-8361.1969.tb01194.x

[40] F. W. Lawvere, Equality in hyperdoctrines and comprehension schema as an adjoint
functor in Proceedings of the AMS Symposium on Pure Mathematics XVII, 1970, pp. 1–14.
available at: https://ncatlab.org/nlab/files/LawvereComprehension.pdf

[41] A. Löh, C. McBride, and W. Swierstra, A Tutorial Implementation of a Dependently Typed
Lambda Calculus, Fundamenta Informaticae, vol. 102, no. 2, pp. 177–207, Apr. 2010. available
at: https://www.andres-loeh.de/LambdaPi/

[42] P. van der Walt and W. Swierstra, Engineering Proof by Reflection in Agda in Implemen-
tation and Application of Functional Languages, 2013, pp. 157–173. DOI: 10.1007/978-3-642-
41582-1_10

[43] M. J. Gabbay and A. M. Pitts, A New Approach to Abstract Syntax with Variable
Binding, Formal Aspects of Computing, vol. 13, no. 3, pp. 341–363, Jul. 2002. DOI:
10.1007/s001650200016

[44] P. Selinger, A Survey of Graphical Languages for Monoidal Categories, in New structures
for physics, Springer Berlin Heidelberg, 2011, pp. 289–355. DOI: 10.1007/978-3-642-12821-9_4

[45] S. Balco and A. Kurz, Nominal String Diagrams in 8th Conference on Algebra
and Coalgebra in Computer Science (CALCO 2019), 2019, vol. 139, pp. 18:1–18:20. DOI:
10.4230/LIPIcs.CALCO.2019.18

[46] H. Brandt, Über eine Verallgemeinerung des Gruppenbegriffes,Mathematische Annalen,
vol. 96, no. 1, pp. 360–366, Dec. 1927. DOI: 10.1007/BF01209171

[47] S. Mac Lane, Categories for the Working Mathematician. Springer New York, 1978. DOI:
10.1007/978-1-4757-4721-8

137

https://doi.org/10.1007/s11229-007-9168-7
https://doi.org/10.4233/uuid:e67e7724-b378-4ca3-ad4e-c40df245af5e
https://doi.org/10.4233/uuid:e67e7724-b378-4ca3-ad4e-c40df245af5e
https://doi.org/10.1007/BF00370318
https://doi.org/10.1093/jigpal/5.2.259
https://doi.org/10.1080/00201746008601312
https://doi.org/10.1111/j.1746-8361.1969.tb01194.x
https://ncatlab.org/nlab/files/LawvereComprehension.pdf
https://www.andres-loeh.de/LambdaPi/
https://doi.org/10.1007/978-3-642-41582-1_10
https://doi.org/10.1007/978-3-642-41582-1_10
https://doi.org/10.1007/s001650200016
https://doi.org/10.1007/978-3-642-12821-9_4
https://doi.org/10.4230/LIPIcs.CALCO.2019.18
https://doi.org/10.1007/BF01209171
https://doi.org/10.1007/978-1-4757-4721-8

[48] V. Pratt, Modeling concurrency with partial orders, International Journal of Parallel Pro-
gramming, vol. 15, no. 1, pp. 33–71, Feb. 1986. DOI: 10.1007/BF01379149

[49] Y. Lafont, Towards an algebraic theory of Boolean circuits, Journal of Pure and Applied
Algebra, vol. 184, pp. 257–310, 2003. DOI: 10.1016/S0022-4049(03)00069-0

[50] P.-L. Curien and S. Mimram, Coherent Presentations of Monoidal Categories, Logical
Methods in Computer Science, vol. 13, no. 3, pp. 1–38, Sep. 2017. DOI: 10.23638/LMCS-
13(3:31)2017

[51] F. Bonchi, F. Gadducci, A. Kissinger, P. Sobociński, and F. Zanasi, Rewriting modulo sym-
metric monoidal structure in Proceedings of the 31st Annual ACM/IEEE Symposium on Logic
in Computer Science, 2016, pp. 710–719. DOI: 10.1145/2933575.2935316

[52] F. Bonchi, F. Gadducci, A. Kissinger, P. Sobociński, and F. Zanasi, Confluence of Graph
Rewriting with Interfaces, in Programming languages and systems, Springer Berlin Heidel-
berg, 2017, pp. 141–169. DOI: 10.1007/978-3-662-54434-1_6

[53] F. Zanasi, Rewriting in Free Hypegraph Categories in Proceedings Third Workshop on
Graphs as Models, GaM@ETAPS, 2017, pp. 16–30. DOI: 10.4204/EPTCS.263.2

[54] K. Bar, A. Kissinger, and J. Vicary, Globular: An online proof assistant for higher-
dimensional rewriting, Logical Methods in Computer Science ; Volume 14, pp. Issue 1 ;
1860–5974, 2018. DOI: 10.23638/LMCS-14(1:8)2018

[55] A. Kissinger and V. Zamdzhiev, Quantomatic: A proof assistant for diagrammatic reason-
ing, in Automated deduction - CADE-25, Springer International Publishing, 2015, pp. 326–336.
DOI: 10.1007/978-3-319-21401-6_22

[56] P. Sobocinski, P. W. Wilson, and F. Zanasi, CARTOGRAPHER: A Tool for String Diagrammatic
Reasoning (Tool Paper) in 8th conference on algebra and coalgebra in computer science
(calco 2019), 2019, vol. 139, pp. 20:1–20:7. DOI: 10.4230/LIPIcs.CALCO.2019.20

[57] F. Zanasi, Interacting Hopf Algebras- the Theory of Linear Systems, PhD Thesis, Ecole
Normale Supérieure de Lyon - ENS LYON, 2015. available at: https://tel.archives-ouvertes.
fr/tel-01218015

[58] B. Jacobs, Categorical Logic and Type Theory. Elsevier Science, 1999

[59] T. Streicher, Fibred Categories à la Jean Bénabou. 1999. arXiv: 1801.02927

[60] S. Lack, Composing PROPs, Theory and Applications of Categories, vol. 13, pp. 147–163,
2004. available at: http://www.tac.mta.ca/tac/volumes/13/9/13-09abs.html

[61] P. Hackney and M. Robertson, On the Category of Props, Applied Categorical Structures,
vol. 23, no. 4, pp. 543–573, Mar. 2014. DOI: 10.1007/s10485-014-9369-4

[62] R. Blute, J. Cockett, R. Seely, and T. Trimble, Natural deduction and coherence for weakly
distributive categories, Journal of Pure and Applied Algebra, vol. 113, no. 3, pp. 229–296, Dec.
1996. DOI: 10.1016/0022-4049(95)00159-x

[63] D. R. Ghica and A. Lopez, A Structural and Nominal Syntax for Diagrams in Proceedings
14th International Conference on Quantum Physics and Logic, QPL 2017, 2017, pp. 71–83. DOI:
10.4204/EPTCS.266.4

138

https://doi.org/10.1007/BF01379149
https://doi.org/10.1016/S0022-4049(03)00069-0
https://doi.org/10.23638/LMCS-13(3:31)2017
https://doi.org/10.23638/LMCS-13(3:31)2017
https://doi.org/10.1145/2933575.2935316
https://doi.org/10.1007/978-3-662-54434-1_6
https://doi.org/10.4204/EPTCS.263.2
https://doi.org/10.23638/LMCS-14(1:8)2018
https://doi.org/10.1007/978-3-319-21401-6_22
https://doi.org/10.4230/LIPIcs.CALCO.2019.20
https://tel.archives-ouvertes.fr/tel-01218015
https://tel.archives-ouvertes.fr/tel-01218015
https://arxiv.org/abs/1801.02927
http://www.tac.mta.ca/tac/volumes/13/9/13-09abs.html
https://doi.org/10.1007/s10485-014-9369-4
https://doi.org/10.1016/0022-4049(95)00159-x
https://doi.org/10.4204/EPTCS.266.4

[64] P. W. O’Hearn and D. J. Pym, The logic of bunched implications, The Bulletin of Symbolic
Logic, vol. 5, no. 2, pp. 215–244, 1999. DOI: 10.2307/421090

[65] D. Galmiche, D. Méry, and D. Pym, The semantics of bi and resource tableaux,
Mathematical. Structures in Comp. Sci., vol. 15, no. 6, pp. 1033–1088, Dec. 2005. DOI:
10.1017/S0960129505004858

[66] B. Dongol, V. B. F. Gomes, and G. Struth, A Program Construction and Verification Tool for
Separation Logic in Mathematics of Program Construction - 12th International Conference,
Königswinter, Germany, 2015, pp. 137–158. DOI: 10.1007/978-3-319-19797-5_7

[67] F. Bonchi, P. Sobociński, and F. Zanasi, The Calculus of Signal Flow Diagrams I: Linear
relations on streams, Information and Computation, vol. 252, no. C, pp. 2–29, Feb. 2017. DOI:
10.1016/j.ic.2016.03.002

[68] A. Tzimoulis, Algebraic and Proof-Theoretic Foundations of the Logics for Social Be-
haviour, PhD Thesis, Delft University of Technology, 2018. DOI: 10.4233/uuid:e67e7724-b378-
4ca3-ad4e-c40df245af5e

[69] B. Jacobs and F. Zanasi, The Logical Essentials of Bayesian Reasoning, 2018. arXiv:
1804.01193

[70] F. Zanasi, The Algebra of Partial Equivalence Relations, Electronic Notes in Theoretical
Computer Science, vol. 325, pp. 313–333, Oct. 2016. DOI: 10.1016/j.entcs.2016.09.046

[71] F. Bonchi, P. Sobociński, and F. Zanasi, Interacting Hopf algebras, Journal of Pure and
Applied Algebra, vol. 221, no. 1, pp. 144–184, Jan. 2017. DOI: 10.1016/j.jpaa.2016.06.002

139

https://doi.org/10.2307/421090
https://doi.org/10.1017/S0960129505004858
https://doi.org/10.1007/978-3-319-19797-5_7
https://doi.org/10.1016/j.ic.2016.03.002
https://doi.org/10.4233/uuid:e67e7724-b378-4ca3-ad4e-c40df245af5e
https://doi.org/10.4233/uuid:e67e7724-b378-4ca3-ad4e-c40df245af5e
https://arxiv.org/abs/1804.01193
https://doi.org/10.1016/j.entcs.2016.09.046
https://doi.org/10.1016/j.jpaa.2016.06.002

A
Sequent calculus in t3

This is a sample t3 file defining a small subset of the propositional fragment of the sequent
calculus. This file can be found at: https://github.com/goodlyrottenapple/toolbox3/blob/
master/src/test_progs/Sequent.t3.

infix 2 |− , ,ֿك ≡, ∷
infixr 3 → , ;
infixl 4 ∧, ∨

language LaTeX

smt-data F : Type where
At : (atom : Name) <-ك F

| (∧) : (andL : F) <-ك (andR : F) <-ك F
| (∨) : (orL : F) <-ك (orR : F) <-ك F
| (→) : (impL : F) <-ك (impR : F) <-ك F
| ¬ : (neg : F) <-ك F

end

translation F to LaTeX where
At a <-ك "{a}#ك"

| a ∧ b <-ك {a}#ك" \wedge "{b}#ك
| a ∨ b <-ك {a}#ك" \vee "{b}#ك
| a → b <-ك {a}#ك" \to "{b}#ك
| ¬ a <-ك "\neg "{a}#ك

end

smt-data List : Type <-ك Type where
∅ : {a : Type} <-ك List a

| (;) : {a : Type} <-ك (hd : a) <-ك (tl : List a) <-ك List a
end

translation List to LaTeX where
∅ <-ك ""

| x ; xs <-ك "\cons{ك#{x}}{ك#{xs}}"
end

140

https://github.com/goodlyrottenapple/toolbox3/blob/master/src/test_progs/Sequent.t3
https://github.com/goodlyrottenapple/toolbox3/blob/master/src/test_progs/Sequent.t3

smt-builtin (≡) ['=] : {a : Type} <-ك a <-ك a <-ك Prop end

smt-builtin (∷) [as] : {a : Type} <-ك a <-ك Type <-ك a end

smt-def (ֿك) : (x : List F) <-ك (y : List F) <-ك List F where
(ite (x ≡ (∅ ∷ (List F)))

y
((hd x) ; ((tl x) ֿك y))

)
end

data (|−) : List F <-ك List F <-ك Type where
Id : {a : Name} <-ك (At a) ; ∅ |− (At a) ; ∅

| AndL1 : {Γ : List F} <-ك {Δ : List F} <-ك {A : F} <-ك {B : F} <-ك
A ; Γ |− Δ <-ك

(A ∧ B) ; Γ |− Δ

| AndL2 : {Γ : List F} <-ك {Δ : List F} <-ك {A : F} <-ك {B : F} <-ك
B ; Γ |− Δ <-ك

(A ∧ B) ; Γ |− Δ

| OrR1 : {Γ : List F} <-ك {Δ : List F} <-ك {A : F} <-ك {B : F} <-ك
Γ |− A ; Δ <-ك

Γ |− (A ∨ B) ; Δ

| OrR2 : {Γ : List F} <-ك {Δ : List F} <-ك {A : F} <-ك {B : F} <-ك
Γ |− B ; Δ <-ك

Γ |− (A ∨ B) ; Δ

| OrL : {Γ₁ : List F} <-ك {Γ₂ : List F} <-ك
{Δ₁ : List F} <-ك {Δ₂ : List F} <-ك
{Γ : List F} <-ك [Γ ≡ (Γ₁ ֿك Γ₂)] <-ك
{Δ : List F} <-ك [Δ ≡ (Δ₁ ֿك Δ₂)] <-ك
{A : F} <-ك {B : F} <-ك

(A ; Γ₁) |− Δ₁ <-ك (B ; Γ₂) |− Δ₂ <-ك

(A ∨ B) ; Γ |− Δ
| CR : {Γ : List F} <-ك {Δ : List F} <-ك {A : F} <-ك

Γ |− A ; A ; Δ <-ك

Γ |− A ; Δ

end

translation (|−) to LaTeX where
Id : x |− y <-ك
"\AXC{}\RightLabel{Id}\n\UIC{$ك#{x} \vdash "{${y}#ك

| AndL1 p : x |− y <-ك
{x}#ك$}RightLabel{$\wedge_{L1}$}\n\UIC\{p}#ك" \vdash "{${y}#ك

| AndL2 p : x |− y <-ك
{x}#ك$}RightLabel{$\wedge_{L2}$}\n\UIC\{p}#ك" \vdash "{${y}#ك

| OrR1 p : x |− y <-ك
{x}#ك$}RightLabel{$\vee_{R1}$}\n\UIC\{p}#ك" \vdash "{${y}#ك

| OrR2 p : x |− y <-ك
{x}#ك$}RightLabel{$\vee_{R2}$}\n\UIC\{p}#ك" \vdash "{${y}#ك

| OrL p q : x |− y <-ك
{x}#ك$}RightLabel{$\vee_L$}\n\BIC\{q}#كn\n\{p}#ك" \vdash "{${y}#ك

| CR p : x |− y <-ك
{x}#ك$}RightLabel{$C_R$}\n\UIC\{p}#ك" \vdash "{${y}#ك

end

141

def pt : At 'a ∨ At 'b ; ∅ |− At 'a ∨ At 'b ; ∅ where
CR (OrL

{∅} {∅}
{At 'a ∨ At 'b ; ∅} {At 'a ∨ At 'b ; ∅}
(OrR1 Id) (OrR2 Id))

end

translate pt to LaTeX end

142

B
Internal categories

For further details on this topic, see e.g. Borceux, Handbook of Categorical Algebra I (Chapter
8) or the nLab entry on internal categories.

Definition B.1. [Internal category]

In a category with finite limits an internal category is a diagram

𝐴3

right //

compr //

compl //

left //

𝐴2
𝜋2 //

comp //

𝜋1 //
𝐴1

dom //

cod //
𝐴0𝑖oo (B.1)

such that the following equations hold

1) the diagram

𝐴2
𝜋2 //

𝜋1
��

𝐴1
dom
��

𝐴1
cod

// 𝐴0

is a pullback,

2) dom ⚬ comp = dom ⚬ 𝜋1 and cod ⚬ comp = cod ⚬ 𝜋2
3) dom ⚬ 𝑖 = id𝐴0 = cod ⚬ 𝑖
4) comp ⚬ ⟨𝑖 ⚬ dom, id𝐴1 ⟩ = id𝐴1 = comp ⚬ ⟨id𝐴1 , 𝑖 ⚬ cod⟩
5) comp ⚬ compl = comp ⚬ compr

and where

• ⟨𝑖 ⚬ dom, id𝐴1 ⟩ ∶ 𝐴1 → 𝐴2 and ⟨id𝐴1 , 𝑖 ⚬ cod⟩ ∶ 𝐴1 → 𝐴2 are the arrows into
the pullback 𝐴2 pairing 𝑖 ⚬ dom, id𝐴1 ∶ 𝐴1 → 𝐴1 and id𝐴1 , 𝑖 ⚬ cod ∶ 𝐴1 → 𝐴1,
respectively.

143

https://doi.org/10.1017/CBO9780511525858
https://ncatlab.org/nlab/show/internal+category

• the “triple of arrows”-object 𝐴3 is the pullback

𝐴3
right

//

left
��

𝐴2
𝜋1
��

𝐴2
𝜋2 // 𝐴1

where, intuitively, left “projects out the left two arrows” and right “projects out
the right two arrows”

• compl is the arrow composing the “left two arrows”

𝐴3 𝜋2 ⚬ right

''

compl

%%

comp ⚬ left

""

𝐴2
𝜋2 //

𝜋1
��

𝐴1
dom
��

𝐴1
cod

// 𝐴0

• compr is the arrow composing the “right two arrows”

𝐴3 comp ⚬ right

''

compr

%%

𝜋1 ⚬ left

""

𝐴2
𝜋2 / /

𝜋1
��

𝐴1
dom
��

𝐴1
cod

// 𝐴0

Remark B.2. Equations 1) and 2) define 𝐴2 as the ‘object of composable pairs of ar-
rows’ while 3) and 4) express that the ‘object of arrows’ 𝐴1 has identities and 5) for-
malises associativity of composition. Since 𝐴2 and 𝐴3 are pullbacks, the structure is
defined completely already by (𝐴0, 𝐴1, dom, cod, 𝑖, comp), but including 𝐴3 as well as
compr, compl, right, left, 𝜋2, 𝜋1 helps writing out the equations.

Definition B.3. Amorphism 𝑓 ∶ 𝐴 → 𝐵 between internal categories, an internal functor,
is a pair (𝑓0, 𝑓1) of arrows such that the six squares (one for each of 𝜋2, comp, 𝜋1, dom,
cod, 𝑖)

𝐴2
𝜋2 //

comp //

𝜋1 //

𝑓2

��

𝐴1
dom //

cod //

𝑓1

��

𝐴0𝑖oo

𝑓0

��

𝐵2
𝜋2 //

comp //

𝜋1 //
𝐵1

dom //

cod //
𝐵0𝑖oo

(B.2)

commute.

144

Remark B.4.

• Because 𝐵2 is a pullback 𝑓2 is uniquely determined by 𝑓1. In more detail, if
Γ → 𝐵2 is any arrow then, because 𝐵2 is a pullback, it can be written as a pair

⟨𝑙, 𝑟⟩ ∶ Γ → 𝐵2 (B.3)

of arrows 𝑙, 𝑟 ∶ Γ → 𝐵1 and 𝑓2 is determined by 𝑓1 via

𝑓2 ⚬ ⟨𝑙, 𝑟⟩ = ⟨𝑓1 ⚬ 𝑙, 𝑓1 ⚬ 𝑟⟩ (B.4)

• Even if 𝑓2 is not needed as part of the structure in the above definition, including
𝑓2 makes it easier to state that 𝑓1 preserves composition.

• Similarly, 𝐵3 is a pullback, and there is a unique arrow 𝑓3 such that
(𝑓0, 𝑓1, 𝑓2, 𝑓3) together make further 4 squares commute, one for each of
right, compr, compl, left, see (B.1). We may include 𝑓3 in the structure whenever
convenient.

Definition B.5. A natural transformation 𝛼 ∶ 𝑓 → 𝑔 between internal functors 𝑓, 𝑔 ∶
𝐴 → 𝐵, an internal natural transformation, is an arrow 𝛼 ∶ 𝐴0 → 𝐵1 such that, recalling
(B.3),

dom ⚬ 𝛼 = 𝑓0 cod ⚬ 𝛼 = 𝑔0 comp ⚬ ⟨𝑓1, 𝛼 ⚬ cod⟩ = comp ⚬ ⟨𝛼 ⚬ dom, 𝑔1⟩

Remark B.6. Internal categories with functors and natural transformations form a 2-
category. We denote by 𝐶𝑎𝑡(V) the category or 2-category of categories internal in
V. The forgetful functor 𝐶𝑎𝑡(V) → C mapping an internal category 𝐴 to its object
of objects 𝐴0 has both left and right adjoints and, therefore, preserves limits and
colimits. Moreover, a limit of internal categories is computed component-wise as
(lim 𝐷)𝑗 = lim(𝐷𝑗) for 𝑗 = 0, 1, 2.

Remark B.7. A monoidal category can be thought of both as a monoid in the category
of categories and as a category internal in the category of monoids. To understand
this in more detail, note that both cases give rise to the diagram

𝐴2 × 𝐴2 comp×comp //

𝑚2

��

𝐴1 × 𝐴1
dom×dom

//

cod×cod
//

𝑚1

��

𝐴0 × 𝐴0

𝑚0

��

𝐴2 comp // 𝐴1
dom

//

cod
// 𝐴0

where

• in the case of a monoid 𝐴 in the category of internal categories,𝑚 = (𝑚0, 𝑚1, 𝑚2)
is an internal functor 𝐴 × 𝐴 → 𝐴 and, using that products of internal categories

145

are computed component-wise, we have comp⚬𝑚2 = 𝑚1⚬(comp×comp), which
gives us the interchange law

(𝑓; 𝑔) ⋅ (𝑓′; 𝑔′) = (𝑓 ⋅ 𝑓′) ; (𝑔 ⋅ 𝑔′)

by using (B.4) with 𝑚 for 𝑓 and writing ; for comp and ⋅ for 𝑚1;
• in the case of a category internal in monoids we have monoids 𝐴0, 𝐴1, 𝐴2 and
monoid homomorphisms 𝑖, dom, cod, comp which, if spelled out, leads to the
same commuting diagrams as the previous item.

146

	Introduction
	I Display calculi
	Background
	Sequent calculus
	Display calculi
	Trade-offs
	Modal logics and multi-type display calculi

	Calculus toolbox
	Muddy children puzzle
	Tree editor
	Calculus editor
	Internal representation
	Type checking
	Front-end
	Limitations

	Toolbox t3
	FOL displayed
	Dependent types
	t3 core
	SMT solvers and the Prop type
	Translation to

	II Nominal string diagrams
	Introduction
	Partially monoidal string diagrams
	Partially monoidal categories
	Syntax and Semantics
	The Theory of Bijective Functions
	The Theory of Functions
	Software Tools

	Nominal string diagrams
	Setting the Scene: String Diagrams and Nominal Sets
	Internal monoidal categories
	Examples
	Nominal monoidal theories and nominal \mathsf{PROP}s
	Equivalence of nominal and ordinary \mathsf{PROP}s
	Equivalence of theories
	Related work
	Conclusion

	Conclusion
	Bibilography
	Appendix
	Sequent calculus in t3
	Internal categories

